

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF SIGN LANGUAGE TRANSLATOR

DEVICE

This report is submitted in accordance with the requirement of the Universiti Teknikal

Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology

(Industrial Automation and Robotic) with Honours.

UNIVERSITI TEKNIKAby MALAYSIA MELAKA

MUHAMMAD IBNUL HANAFIYYAH BIN LOKMAN

B071710787

980915055189

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

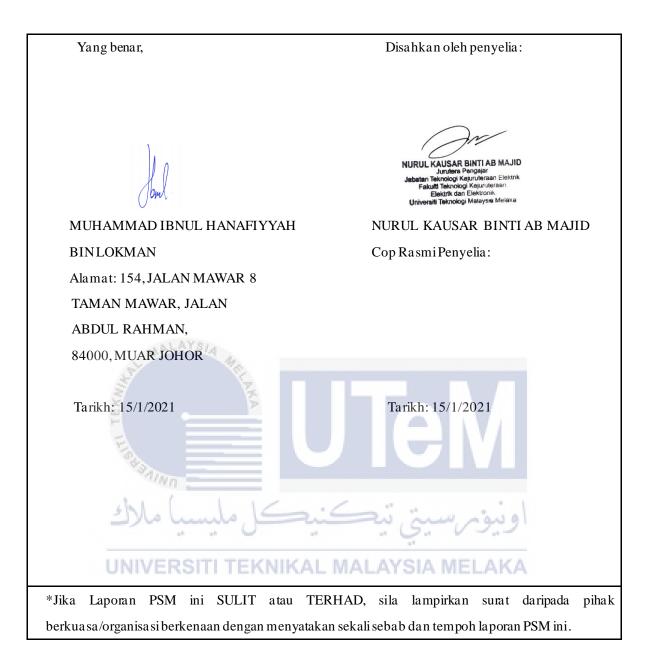
Tajuk: Development of Sign Language Translator Device

Sesi Pengajian: 2020

Saya **MUHAMMAD IBNUL HANAFIYYAH BIN LOKMAN** mengaku membenatkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. **Sila tandakan(X)


Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malays

SULIT* sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD*

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/bada di mana penyelidikan dijalankan.

TIDAK TERHAD

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF SIGN LANGUAGE TRANSLATOR DEVICE is the results of my own research except as cited in references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : MUHAMMAD IBNUL HANAFIYYAH BIN LOKMAN Author UNIVERSI EKNIKAL MALAYSIA MELAKA Т Date : 15/1/2021

APPROVAL

This report is submitted to the Faculty of Electrical Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation and Robotics) with Honours. The member of the supervisory is as follow:

Signature

AMALIA AIDA BINTI ABD HALIM Jurutera Pengajar Jabatan Teknologi Kejuruteraan Eketrik dan Elektronik Universiti Teknologi Malaysia Melaka

Co-supervisor: AMALIA AIDA BINTI ABD. HALIM

ABSTRAK

Pekak-bisu adalah istilah orang yang tidak dapat bercakap dengan normal kerana cacat sejak lahir atau mengalami kemalangan yang menjadikan mereka cacat kekal. Orang bisu-pekak dapat menghasilkan bunyi tetapi tidak dapat mengartikulasikan dengan cukup baik untuk bercakap atau tidak dapat merumuskan kata dan ayat yang koheren. Mereka biasanya menggunakan bahasa isyarat dengan bantuan isyarat tangan untuk berkomunikasi atau menghantar maklumat kepada orang lain. Masalah timbul apabila kebanyakan orang tidak begitu mahir dengan bahasa isyarat sehingga mewujudkan jurang komunikasi antara orang normal dan orang pekak. Mengenai masalah ini,projek ini berdasarkan teknik bukan penglihatan. Teknik bukan penglihatan menggunakan sensor. Ia dapat mengurangkan salah komunikasi dengan menterjemahkan isyarat bahasa dari pergerakan tangan menjadi teks atau bunyi yang dapat dibaca yang dapat difahami oleh semua orang dengan mudah. Penggunaan mikrokontroler Arduino adalah untuk memproses input dari sensor dan mengubahnya menjadi data yang dapat dibaca. Projek ini juga dilengkapi dengan penggunaan aplikasi android untuk memantau atau menampilkan data output yang diproses oleh mikrokontroler Arduino. Projek ini mudah alih dan mesra pengguna. Ini juga secara tidak langsung menjadikan orang normal memahami bahasa isyarat juga. Dari itu, salah komunikasi antara orang-orang bisu pekak dengan masyarakat dapat dihapuskan. Kesimpulannya, penggunaan projek ini sangat praktikal untuk komunikasi yang lebih baik di masa hadapan.

ABSTRACT

Deaf-mute is a term of people who are unable to speak normally because of defective from birth or having accident that make them permanent disability. Deaf-mute people can produce sounds but cannot articulate well enough to speak or cannot formulate coherent words and sentences. They usually used sign language with the help of hand gestures to communicate or sending information to others. The problem arises when most people are not quite familiar with sign language, thus creating the communication abyss between normal people and deaf-mute people. Regarding to this problem, this project was based on non-vision technique. Non-vision technique used sensors. it that can reduce miscommunication by translating sign language from hand gestures into readable text or sounds that can easily be understood by everyone. The used of Arduino microcontroller is to process the inputs from sensors and convert them into readable data. This project also comes with the use of android application which is to monitor or display the output data that processed by Arduino microcontroller. This project was portable and user friendly. It also indirectly makes normal people understand sign language as well. From that, the miscommunication between deaf-mute people with the society can be eliminated. In conclusion, the used of this project was practically good for better communication in future.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved family

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

For this final documentation of my degree final year project, I would like to give a thousand of thanks to who gave me courage, spirit and always support me in any condition that I am going through along the way to finish this final project. A special thanks to my project supervisor, Mrs. Nurul Kausar Bt Ab Majid, spending time, giving suggestion and kindness helping me to manage my project especially in constructing the product as well as writing this documentation. I also appreciate to each lecturer that have taught me, especially about the knowledge and tips in conducting this research. This documentation was so mean to me. Thank you for your kindness. All the guidance and cooperated are highly appreciated.

TABLE OF CONTENTS

	PAGE
DECLARATION	iv
APPROVAL	v
ABSTRAK	vi
ABSTRACT	vii
DEDICATION	viii
ACKNOWLEGDE	ix
TABLE OF CONTENT	X
LIST OF TABLES	XV
اونية مرسية بتيكنيك مليسيا EIST OF FIGURES	xvi
LIST OF APPENDIXS	XX
UNIVERSITI TEKNIKAL MALAYSIA MELAKA LIST OF ABBREVIATIONS	xxi

СНА	PTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Project Background	1
1.3	Problem Statement	3
1.4	Objective	3
1.5	Project Scope	4

CHA	PTER 2 LITERATURE REVIEW	5
2.0	Introduction	5
2.1	Techno-Talk: An American Sign Language (ASL) Translator	6
2.2	Sign to Letter Translator System using a Hand Glove	7
2.3	Design and development of hand gesture recognition system	
	for speech impaired people.	8
2.4	AVR based embedded system for speech impaired people	9
2.5	Gesture Aided Speech for Deaf and Mute	11
2.6	Sensor Based Hand Gesture Recognition System for English Alphabets used in Sign Language of Deaf - Mute People.	12
2.7	Smart Wearable Hand Device for Sign Language Interpretation System with Sensors Fusion	13
2.8	Sign Language Recognition Based on Intelligent Glove	14
2.9	Hand Gesture Recognition and Voice Conversion System for Dump People	16
2.10	Sign Language to Speech Conversion	17
2.11	A Cost-Effective Design and Implementation of Arduino Based Sign	
	Language Interpreter	18
2.12	A Real-time Portable Sign Language Translation System	19
2.13	American Sign Language Interpreter	20
2.14	Machine Learning Model for Sign Language Interpretation	
	using Webcam Images	21
2.15	American Sign Language Translation via Smart Wearable Glove Technology	23

xi

2.16	Design and Implementation of A Sign-to- Speech/Text System for	
	Deaf and Dumb People	24
2.17	Design of an Assistive Communication Glove using Combined	
	Sensory Channels	25
2.18	Vision-Based Sign Language Translation Device	26
2.19	Development of a Sign Language Translator Using Simplified Tilt,	
	Flex and Contact Sensor Modules	28
2.20	Talking Gloves: Low-Cost Gesture Recognition System for	
	Sign Language Translation	29
2.21	Two Way Wireless Data Communication and American Sign Language	
	Translator Glove for Images Text and Speech Display on Mobile Phone	30
2.22	Hand Sign Recognition-based Communication System for Speech Disable	
	اونيوم سيتي تيڪنيڪل مليسيا ملاك	32
2.23	Sign AR: A Sign Language Translator Application with Augmented	
	Reality using Text and Image Recognition	32
2.24	Sign Language Translator and Gesture Recognition	34
2.25	Sign Language Translator for Mobile Platforms	35
СНА	PTER 3 METHODOLOGY	38
3.1	Introduction	38
	3.1.1 Design Requirement	38
	3.1.2 Flowchart	40
3.2	Development of Android Application	42

	3.2.1 Android Operating System	42
	3.2.2 Arduino and Programming	49
3.3	Development of Wearable Glove	51
	3.3.1 Mechanical Parts	51
	3.3.2 Electrical Parts	53
	3.3.3 Component List	54
	3.3.3.1 Arduino Nano	54
	3.3.3.2 Flex Sensor	55
	3.3.3 Bluetooth Module	56
	3.3.3.4 AXDL335 Accelerometer Sensor	57
3.4	Analysis of System Performance	58
	3.4.1 Strings and Text Data using ADC	59
	وبيوس سيني بـــــــــــــــــــــــــــــــــــ	60
	3.4.3 Analysis of Degree of Freedom Accelerometer Sensor	61
3.5	Project Planning	63
3.6	Summary of Methodology	64
СНА	PTER 4 RESULTS AND DISCUSSION	65
4.1	Introduction	65
4.2	Android Applications Results	66
4.3	Wearable Sign Language Glove Results	68
4.4	Analysis of System Performance	73
	4.4.1 Analysis of Voltage Divider Circuit	74

4.4.2	Analysis of Flex Sensor	77
4.4.3	Analysis of Accelerometer Sensor	78
4.4.4	Conclusion of Analysis	79

CHAPTER 5 CONCLUSION 80 80 5.1 Introduction 5.2 Conclusion 80 5.3 Recommendation 81 REFERENCE 83 APPENDIX 87 **UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

LIST OF TABLES

TABLE	TITLE	PAGE
T 11 4 4		60
Table 4.1:	Translation Lists	68
Table 4.2:	Degree of Bending of Flex Sensor vs Voltage	75
Table 4.3:	Accelerometer Motion data المنابع الونيون سيني تيكنيك السيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	78

LIST OF FIGURES

TITLE

PAGE

FIGURE

Figure 2.1:	Project Hardware	6
Figure 2.2:	Block diagram of the system	8
Figure 2.3:	Experimental Setup	9
Figure 2.4a:	Transmission Section	10
Figure 2.4b:	Receiver section	10
Figure 2.5:	Overview of the System Flow	11
Figure 2.6:	The Waveform Motion of Fingers	12
Figure 2.7:	3D Printed Customs Made Wearable Design	14
Figure 2.8a:	Training Set by CHC Algorithm	15
Figure 2.8b:	Training Set by DROP3 Algorithm	15
Figure 2.9:	Overview of The Project System	16
Figure 2.10:	Setup for The Hardware	18
Figure 2.11:	Sign Language Flow	19
Figure 2.12:	The Architecture of The Portable Sign Language	20
Figure 2.13:	Glove Translator Project	21
Figure 2.14:	Sign Language Architecture	22
Figure 2.15:	Bluetooth Module Used to Link the Project With Android	
	Device	23

Figure 2.16a:	Sign Language Hand Gestures	24
Figure 2.16b:	The Final Project with Speaker And LED	25
Figure 2.17:	Sensor Glove Design	26
Figure 2.18:	Camera Captured 30 Frames Per Second	27
Figure 2.19:	Pressure Graph from Flex Sensors	28
Figure 2.20:	Sensors Glove Model	30
Figure 2.21:	The Project Can Form A Set of Sentenced	31
Figure 2.22:	System Block Diagram	32
Figure 2.23a:	Augmented Reality System Block Diagram	33
Figure 2.23b	The application will detect the text and produce animation sign	34
Figure 2.24:	The Accuracy and Error Percentage of The Sign	
الالك	اويوم سيتي بيڪيڪل Recognition	35
Figure 2.25: UNIV	Dataset of The Hand Gestures LAYSIA MELAKA	36
Figure 3.1:	Project Research's Flowchart	40
Figure 3.2:	System Flowchart	41
Figure 3.3:	Android Operating System	42
Figure 3.4:	MIT App Inventor 2	43
Figure 3.5:	Android Emulator in MIT App Inventor	44
Figure 3.6:	Front Screen of Application	45
Figure 3.7:	Front Screen's block program	45
Figure 3.8:	Credit Screen	46
Figure 3.9:	Bluetooth connection's block programming	47

Figure 3.10:	Display Screen	47
Figure 3.11:	Display Screen Block Programming	48
Figure 3.12:	Display Screen block programming	49
Figure 3.13:	Arduino Open-Source Software	51
Figure 3.14:	Representation of Project's Hardware	52
Figure 3.15:	Project Circuit using Fritzing	53
Figure 3.16:	Arduino Nano	54
Figure 3.17:	Arduino Nano pin mapping	54
Figure 3.18:	Flex sensors	55
Figure 3.19:	Flex sensors voltage divider	56
Figure 3.20:	HC-06 Bluetooth Module	56
Figure 3.21:	HC-06 Bluetooth Module pin connection	57
Figure 3.22: 4	ويتور سيني ت ADXL335 Accelerometer sensor	58
Figure 3.23:	ADXL335 Accelerometer pin connection	58
Figure 3.24:	Alphabet Sign Language	59
Figure 3.25:	Simulation of Flex Sensor on Proteus 8	60
Figure 3.26:	Calibration of Flex Sensor Using Arduino Serial Monitor	61
Figure 3.27:	Accelerometer Basic Architecture	62
Figure 3.28:	Calibration of Accelerometer Sensor Using Arduino Serial	
	Monitor	62
Figure 3.29:	Gantt Chart Progress for Bachelor's Degree Project 1	63
Figure 4.1:	Display Screen	66

Figure 4.2:	Bluetooth List	67
Figure 4.3:	Block representation of the system in this project	73
Figure 4.4:	Voltage Divider Circuit	74
Figure 4.5:	Voltage Divider Schematic	74
Figure 4.6:	Graph of Degree of Bending Against Voltage	76
Figure 4.7:	Flex Sensor on the Glove	77

LIST OF APPENDIXS

APPENDIX	TITLE	PAGE
APPENDIX 1	MIT Block Diagram in Android Application	87
APPENDIX 2	Arduino Nano Datasheet	88
APPENDIX 3	Flex Sensor Datasheet	89
APPENDIX 4	Accelerometer Sensor Datasheet	90
APPENDIX 5	Coding of Sign Language Translator Device from Arduino اونیونی سینی تیکنیکل ملیسیا ما	91
UNP	VERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF ABBREVIATION

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, it will explain about background of the project, problem statement, objective, project scope and the thesis outline.

1.2 Project Background

Nowadays, sign languages have been used widespread among deaf and mute community to communicate in their daily life. Sign languages was a language that use **UNIVERSITI TEKNIKAL MALAYSIA MELAKA** different sign made with the hands and other movements, including facial expressions and postures of the body which is usually used by people who are deaf or mute. However, the knowledge of these sign language is still not familiarized and unclear among the public, these will affect the deaf and mute community to put themselves among society and become more

stand out.

Lately, government is doing some efforts to reduce the abyss between these community by doing event that make the sign language well known among the normal people.

The university also offers the sign languages as one of the subjects to be learned in campus.

Other than that, sign languages are not standardized throughout the globe. This is because each country has its own perspective and native sign language, which make them more specifics and hard to categorized. For example, American sign language (ASL) is different language from British sign language (BSL) and Americans who know ASL may not understand BSL. It will make these sign language users cannot understand each other due to many sign languages exist worldwide.

According to the World Health Organization (WHO), millions of people across the world live with the disabling of hearing loss. The majority comes from the people who live in low and middle incomes countries where they do not have appropriate tools and good hearing care services. Without suitable inventions, hearing loss will be a very challenging in lives of **UNVERSITITEKNIKAL MALAYSIA MELAKA** those affected. However, there are many causes of hearing loss that can be prevented through public health measures, higher education and empowerment. Raising awareness and improving access service can reduce the impact of hearing loss. Moreover, over 5% of the world population which is 466 million people has disabling hearing loss where 432 million adults and the rest are children. WHO estimated that by 2050, the people with hearing loss will be over 900 million people or one in every ten people will have disabling of hearing.

1.3 Problem Statements

Sign language is not an official language among public, but it is important to get to know this sign language because day by day individuals will meet new friends in their lives. If the person was deaf or mute, it will be easy to understand them. The problem arises when most individuals are lack of awareness and miscommunications during their conversation because do not familiar with sign language. Therefore, the Sign Language Translator is developed to overcome those problems.

1.4 Objectives

There are several objectives to be achieved from this project:

- To develop an Android application to be connect with Arduino Nano microcontroller UNIVERSITI TEKNIKAL MALAYSIA MELAKA as a system.
- ii) To develop a glove that can translate alphabet sign language from hand wrist into text.
- iii) To analyze the performance of the sign language translator.