

DEVELOPMENT OF THE SMART DUSTBIN MONITORING SYSTEM BY USING GSM & GPS REAL-TIME LOCATION

BACHELOR OF ELECTRICAL ENGINEERING TECHNOLOGY (Industrial Automation & Robotics) WITH HONOURS

2020

Faculty of Electrical and Electronic Engineering Technology

Bachelor Of Electrical Engineering Technology (Industrial Automation & Robotics) With Honours

DEVELOPMENT OF THE SMART DUSTBIN MONITORING SYSTEM BY USING GSM & GPS REAL-TIME LOCATION

MUHAMMAD NUR BIN SAPARI

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF THE SMART DUSTBIN MONITORING SYSTEM BY USING GSM & GPS REAL-TIME LOCATION

Sesi Pengajian: 2020

Saya MUHAMMAD NUR BIN SAPARI mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syaratsyarat kegunaan seperti berikut:

- Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

SULIT*

TERHAD

Yang benar, Disahkan oleh penyelia: MUHAMMAD NUR BIN SAPARI Muhammad Fareq Bin Ibrahim Alamat Tetap: Cop Rasmi Penyelia No.23 Jalan Pinang Merah 20, **MUHAMMAD FAREQ BIN IBRAHIM** Jurutera Pengajar Kanan Taman Sayong Pinang, Jabatan Teknologi Kejuruteraan Elektrik Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka Bandar Tenggara 81440, Kulai, Johor Tarikh: 18.2.2021 Tarikh: 22/2/2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF THE SMART DUSTBIN MONITORING SYSTEM BY USING GSM & GPS REAL-TIME LOCATION is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfilment of the requirements for the degree of BACHELOR OF ELECTRICAL ENGINEERING TECHNOLOGY (INDUSTRIAL AUTOMATION AND ROBOTICS) WITH HONOURS with Honours. The member of the supervisory is as follow:

ABSTRAK

Pembangunan sistem Pemantauan Tong Sampah Pintar dengan menggunakan lokasi masa nyata GSM & GPS adalah sistem automatik yang dapat digunakan oleh semua lapisan masyarakat. Di samping itu, tong sampah juga dilengkapi dengan kaedah pengiriman maklumat melalui pesanan ringkas (SMS) dan lokasi masa nyata GPS. Arduino akan diprogram sedemikian rupa sehingga ketika tong sampah diisi, ketinggian yang tinggal dari ketinggian ambang akan ditampilkan. Teks yang dihantar adalah lokasi sampah. Sistem pengesan kuantiti dalam tong sampah menggunakan sensor ultrasonik dan memberikan pesanan ringkas (SMS) untuk menghantar kedudukan kepada pengurusan sampah untuk membersihkan sampah penuh. Setelah tong sampah dibersihkan, orang boleh menggunakan tong sampah semula. LCD akan memaparkan peratusan tahap di tong sampah. Tong sampah ini juga menggunakan sensor ultrasonik untuk membuka penutupnya dan boleh digunakan oleh orang kurang upaya. Sensor ultrasonik akan diletakkan di bawah penutup tong sampah dan menghadap ke bawah. Penutup akan terbuka secara automatik apabila kedua-dua sensor ultrasonik mengesan objek. Sensor ultrasonik yang mengawal penutup akan diletakkan di hadapan tong sampah, dan yang lain berada di atas penutup dan menghadap ke atas. Sistem pemantauan tong sampah pintar yang menggunakan lokasi masa nyata GSM & GPS juga akan memudahkan pengurusan pembersihan di pasar raya atau kawasan awam untuk membuat pemantauan tong sampah yang penuh.

ABSTRACT

Development of the Smart Dustbin Monitoring system by using GSM & GPS realtime location is an automated system that can be used by all levels of society. Besides, the dustbin is also equipped with a method of transmitting information through short messages (SMS) and GPS real-time location. Arduino will be programmed in such a way that when the dustbin is being filled. The text sent is the location of the trash. The system detector quantities in the dustbin using an ultrasonic sensor and provides short messages (SMS) to send a position to the management of waste to clean the full trash. Once the dustbin is cleared, people can reuse the dustbin. This dustbin also uses an ultrasonic sensor to open the lid and can be used by people with disabilities. The ultrasonic sensor for calculating level waste will be placed under the bin lid and facing down. The cap will automatically open when the two ultrasonic sensors detect an object. Ultrasonic sensor for managing the cover will be placed in front of the dust bin, and the other one is on top of the lid and facing up. Smart Dustbin monitoring system using GSM & GPS real-time location will also facilitate the management of cleaning in a supermarket or public area to make the monitoring of dustbin full.

DEDICATION

Specially dedicated to my beloved parents and family

ACKNOWLEDGEMENT

First of all, I would like to thank Allah SWT, The Almighty, a place where I pray and surrender, who has given me strength and ability to complete the project on time. The success and outcome of this project required a lot of guidance and assistance from many people, and I am incredibly fortunate to have got this all along with the completion of this project. I want to express my gratitude to my supportive and caring supervisor Encik Muhammad Fareq Bin Ibrahim, for giving me much guidance and helping me to complete this project. He also guiding me through this project, despite being extraordinarily busy with his duties, and keeping me on the correct path.

Bearing in mind previously, I am using this opportunity to express my deepest gratitude and special thanks to all the lecturers who taught in the past four years and the significant contribution that qualifies me to do my final year project.

I want to extend this to my parents Sapari Bin Kasdi and Faridah Binti Amin, for their kind cooperation and encouragement, which will help complete this project. Their advice has been my strength in moving forward and helping me focus on what I'm doing. They are my backbone and my motivator.

Also, I thank all my friends, whether senior or middle-aged, for helping with software on computers. regardless of the contribution made either in terms of finances or energy, without which my project would not have ended.

TABLE OF CONTENTS

	PAGE
TABLE OF CONTENTS	x
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii

CHA	PTER 1 INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	1
1.3	Objective	4
1.4	اونيۇم سيتي تيكنيكل مليستel Project	5
СНА	UNIVERSITI TEKNIKAL MALAYSIA MELAKA PTER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	History of Dustbin	6
	22.1 Early Times	6
	2.2.2 Middle Ages	8
	2.2.3 Early America and The Industrial Revolution	9
2.3	Past Related on Smart Dustbin	11

	2.3.1 Design of Smart Dust bin	11
2.4	Hardware and Software Review	18
	2.4.1 Microcontroller Device	19
	2.4.2 History of Arduino	19
	2.4.2.1 Arduino Mega 25600	20
	2.4.2.2 Arduino Nano	21
	2.4.2.3 Arduino Uno	22
	2.4.3 Integrated Development Environment (IDE)	23
	2.4.4 Motors	25
	2.4.4.1 Stepper Motor	25
	2.4,4.2 Servo Motor	26
	اونيوم سيتي تيڪني Torque Motor 2.4.4.5	26
	2.4.5 Ultrasonic Sensor	27
	2.4.5.1 Ultrasonic Calculation Measures Distance	28
	2.4.6 GPS	30
	2.4.7 GSM	30
	2.4.7.1 History of GSM	31
	2.4.7.2 GSM SIM900a	32

CH	APTER 3 METHODOLOGY	33
3.1	Introduction	33
3.2	Flowchart	33
3.3	Background Studies	36
	3.3.1 Journal Research	36
	3.3.2 Literature Review	36
3.4	Hardware and Software Design	37
	3.4.1 Hardware Design	37
	3.4.1.1 Arduino Uno	39
	3.4.1.2 GSM	40
	3.4.1.3 GPS	41
	او نوم سېتې تېکنېک ملسيا ملاك	43
		44
	3.4.1.6 L298N Motor Driver Module	45
	3.4.2 Software Design	46
	3.4.2.1 Circuit Design	46
3.5	Develop the Coding	48
3.6	Data Collecting and Analysis	49

CHAI	PTER 4 RESULT AND DISCUSSION	50	
4.1	Introduction	50	
4.2	Hardware Construction	50	
4.3	Software Construction	54	
4.4	Testing and Analysis	57	
	4.4.1 Effectiveness of GSM to Send Signals at Different Times.	58	
	4.4.2 Effectiveness of GSM Sending Signals at Different Places	60	
	4.4.3 Distance Analysis on Ultrasonic Sensor Interfaces with Stepper Motor	61	
CHAI 5.0 5.1 5.2 5.3	PTER 5 CONCLUSION AND RECOMMENDATION Introduction Introduction Conclusion Conclusion Recommendation Introduction UNVERSITEKNIKAL MALAYSIA MELAKA Project Potential	 63 63 63 64 64 	
5.5		04	
REFE	REFERENCES 6		

APPENDIX A

67

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1:	Notification Module Table	47
Table 3.2:	Automatic Lid Module Table	48
Table 4.1:	Effectiveness of GSM send signal at different times	58
Table 4.2:	Effectiveness of GSM sending signals at different places	60
Table 4.3:	Ultrasonic distance analysis	61
مراجع المراجع ا ب المراجع المراج	TI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	Exceeding Trash	4
Figure 2.1:	200 AD	7
Figure 2.2:	King Edward Third	9
Figure 2.3:	19th Century Bottle Diggers	10
Figure 2.4:	Block diagram	12
Figure 2.5:	Block Diagram for trash bin circuit.	13
Figure 2.6:	Block diagram for chassis circuit	13
Figure 2.7:	Example of Chassis	13
Figure 2.8:	ويبوم سيني تي Block Diagram of Smart	14
Figure 2.9:NIVERS	Connection Circuit MALAYSIA MELAKA	15
Figure 2.10:	Transmitter part from dustbin	15
Figure 2.11:	Ultrasonic using to open lid	16
Figure 2.12:	Design of the Dustbin	16
Figure 2.13:	Block diagram of the project	17
Figure 2.14:	Blynk apps	17
Figure 2.15:	Alert Notification in Blynk Apps	18
Figure 2.16:	The first Arduino	20

Figure 2.17:	Arduino Mega	21
Figure 2.18:	Arduino Nano	22
Figure 2.19:	Arduino Uno	23
Figure 2.20:	IDE in Arduino	24
Figure 2.21:	Stepper Motor	25
Figure 2.22:	Servo Motor	26
Figure 2.23:	DC Motor High Torque	27
Figure 2.24:	Ultrasonic Sensor	28
Figure 2.25: MALAY	Ultrasonic working	28
Figure 2.26:	Ultrasonic operate	28
Figure 2.27:	GPS NEO-6M	30
Figure 2.28;	GSM Module	32
Figure 3.1:	Flowchart	35
Figure 3.2:	Flowchart for Background studies	37
Figure 3.3:NVERS	Example Dustbin L MALAYSIA MELAKA	38
Figure 3.4:	Front view and side view	38
Figure 3.5:	Arduino uno pinout	40
Figure 3.6:	GSM SIM900a	41
Figure 3.7:	Pin GPS to Arduino	42
Figure 3.8:	GPS NEO-6M Module	42
Figure 3.9:	Ultrasonic Sensor	43
Figure 3.10:	DC Motor High Torque	44

Figure 3.11:	L298N Driver Motor	45
Figure 3.12:	Simulation connection	46
Figure 3.13:	Flowchart for Develop the Coding	49
Figure 4.1:	Front view	50
Figure 4.2:	Side view	51
Figure 4.3:	Ultrasonic lid opener	52
Figure 4.4:	Mechanism lid	52
Figure 4.5:	Ultrasonic position in the bin	53
Figure 4.6:	Distribution Box	54
Figure 4.7:	Serial Monitor for lid	55
Figure 4.8:	Serial monitor for GSM	55
Figure 4.9:	Messages in the phone	56
Figure 4.10:	Link location open in google	56
Figure 4.11:	Chart GSM send signal	59
Figure 4.12: IVERS	Chart duration ultrasonic to open and close	61

LIST OF ABBRIEVIATIONS

- m metre
- V Volt
- Hz Hertz
- L Distance
- T Time between the emission and reception
- C Sonic speed

CHAPTER 1

INTRODUCTION

The use of dustbins is essential for those who care about cleanliness. This trash bin kept our cities clean. The truth is dustbins are held at many places in the city and the municipal authorities clear the waste in the dustbin at regular intervals. Development of the Smart Dustbin Monitoring System by Using GSM & GPS Real-Time Location is a trash can that monitors garbage level to avoid exceeding trash and sends messages through GSM when the trash level is full. The level of waste in the bin can be check using ultrasonic sensors to calculate the level of garbage. Ultrasonic sensors are also used as proximity interfaces. When an ultrasonic sensor detects an object in front of it, the lid dustbin will open within a few seconds. This feature helps users to maintain hygiene and avoid contaminating germs.

1.1 Project Background

In recent decades, urbanization has increased tremendously, and waste management has become one of the major concerns all over the world. Supermarkets or stalls is a public place where people buy raw materials to cook up household items. Especially supermarket areas that produce large amounts of waste and cause overflowing dustbins. Waste management is less sensitive and does not take this seriously. The filled bin is not cleaned up quickly and makes it difficult for the environment to be kept clean. Many people also do not feel comfortable in messy situations and can cause illness. The overflowing dustbin leads to an unpleasant and eyesore environment and leads to various health issues. The project is intended to prevent this from becoming more serious. If we look at the current waste management process, they have a daily schedule to collect waste from the trash. Sometimes the garbage may not be filled, and they turn in empty-handed. Sometimes garbage fills fast before their reach, and the degradation of waste will lead to the growth of bacteria and viruses. This fulfilment of waste cannot be expected by waste management. This project can help make the job easier.

1.2 Problem statement

Once these smart dustbins can be implemented on a large scale, by replacing the **UNIVERSITI TEKNIKAL MALAYSIA MELAKA** existing garbage bin today, waste can be managed more quickly and efficiently, and at the same, it avoids unnecessary lumping of garbage on the roadside and reduces the problem of full bins. Foul smell from these rotten wastes that remain untreated for a long time, due to negligence of authorities and carelessness of public may lead to long term problems. Mosquitoes and pests can breed rapidly and spread the disease to the surrounding population. This problem may even cause dreadful conditions.

Often the old bins use a manual way to open the lid. This problem makes it difficult for people with disabilities. Use old containers with your feet or require the use of hands to open the cover. Manual methods are not eco-friendly on all levels of people and can only be used by people with no disabilities

Advances in advanced technology now make it easier for people to do the work efficiently. All the information is available only at the fingertips. So, we should be aware of the technology around us and use it in our daily lives.

There are millions of public dustbins out there that people use and are emptied in a few days by the federal authorities. Now the problem is not all dustbins are filled at the same rate, and the dump vehicle wastes time checking every trash. This topic leads to more fuel usage, labour, and cost. The solution is a smart dustbin.

Many people are too lazy to use their hands to open the dustbin before putting in their trash because sometimes, the lid of the dustbin is too dirty for the people to touch. Even more critical, some irresponsible people throw the garbage from far away in hopes that the trash is gone into the dustbin. If not, they just let it go like it never happens. This kind of behaviour is unacceptable and will make our environment look filth generally

The other problem that we can identify about the dustbin is that even when the dustbin is full of trash inside it, there are people who still try to put their dumpster into the dustbin until there is some trash that has come off from the dustbin because there is no more room that can fit the garbage. This kind of problem also can make the environment around the trash look dirty.

II. To analyse the performance of a Smart Dustbin Monitoring System by Using GSM

& GPS Real Time Location.