

DEVELOPMENT OF RESISTOR SORTING MACHINE PROTOTYPE USING IMAGE PROCESSING

BACHELOR OF ELECTRICAL ENGINEERING TECHNOLOGY (INDUSTRIAL AUTOMATION & ROBOTICS) WITH HONOURS

2020

DEVELOPMENT OF RESISTOR SORTING MACHINE PROTOTYPE USING IMAGE PROCESSING

BACHELOR OF ELECTRICAL ENGINEERING TECHNOLOGY (INDUSTRIAL AUTOMATION & ROBOTICS) WITH HONOURS

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF RESISTOR SORTING MACHINE PROTOTYPE USING IMAGE PROCESSING

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering

Technology (Industrial Automation & Robotics) with Honours.

UNIVERSITI TEKNIKALy MALAYSIA MELAKA

AHMAD HARIZ BIN AHAMAD KAMEL B071710264 950911-05-5141

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF RESISTOR SORTING MACHINE PROTOTYPE USING IMAGE PROCESSING

Sesi Pengajian: 2020

Saya AHMAD HARIZ BIN AHAMAD KAMEL mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD*

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD

Yang benar,

Disahkan oleh penyelia:

AHMAD HARIZ BIN AHAMAD

KAMEL

Alamat Tetap:

No 13, Jalan Tu 37, Taman Tasik Utama

75450, Ayer Keroh

Melaka

ROZILAWATI BINTI MOHD NOR

Cop Rasmi Penyelia

ROZILAWATI BINTI MOHD NOR Pensyarah Jabatan Teknologi Kejuruteraan Elektrik Falaulti Teknologi Kejuruteraan Elektrik & Elektronik Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Tarikh: 14 / 2 / 2021

Tarikh: 16 Februari 2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF RESISTOR SORTING MACHINE PROTOTYPE USING IMAGE PROCESSING is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours. The member of the supervisory is as follow:

Signature: ATI BINTI MOHD NOR Supervisor : ROZH ROZILAWATI BINTI MOHD NOR Pensyarah Jabatan Teknologi Kejuruteraan Elektrik Falaulti Teknologi Kejuruteraan Elektrik & Elektronik Universiti Teknikal Malaysia Melaica UNIVERSI ΚΝΙΚΑΙ AYSIA MELAKA

ABSTRAK

Perintang adalah komponen yang paling banyak digunakan dalam litar elektronik semasa sesi makmal. Walau bagaimanapun, komponen elektrik ini biasanya tidak disusun dengan sistematik dimana perintang ini bercampur dengan pelbagai nilai yang berbeza. Ini telah menimbulkan masalah kepada pembantu makmal kerana komponen ini perlu disusun dengan betul sebelum bermula sesi makmal yang seterusnya. Proses ini memakan masa untuk pembantu makmal kerana setiap perintang perlu diperiksa dan diasingkan mengikut nilainya. Selain itu, lebih banyak tenaga kerja yang diperlukan untuk menysusn perintang dalam masa yang singkat. Oleh itu, dengan penghasilan mesin peyusun perintang, semua pengguna makmal dapat menjimatkan masa dan mengurangkan tenaga untuk menyimpan peringtang secara sistematik. Untuk memenuhi keperluan projek ini, kaedah pemprosesan gambar digunakan untuk mengesan kod warna pada perintang. Kamera Pixy2 digunakan sebagai pengesan yang melakukan tugas mengesan nilai perintang berdasarkan kod **ΕΚΝΙΚΔΙ ΜΔΙ** warna. Manakala Arduino Uno berfugnsi sebagai otak bagi system ini dengan menjalankan proses system kawalan. Servo 1, Servo 2, LED dan LCD akan dikendalikan oleh Arduino Uno untuk melakukan tugas pengasigan. Hasil menunjukkan bahawa system ini menggunakan masa yang lebih singkat berbanding melakukannya secara manual dengan menggunakan multimeter. Berdasarkan data yang terkumpul, mesin ini terbukti cekap dan berkesan kerana memerlukan masa yang singkat untuk melakukan proses pengasingan perintang mengikut nilai rintangannya.

ABSTRACT

Resistors are the most used components in electronic circuit during laboratory session. However, this electrical component usually left unorganized and the resistor mixed with other resistor that has different value. Thus, this has caused problems for the lab assistant as the resistor need to be store properly before another group of students when into the laboratory. It is a time-consuming process for the lab assistant as the resistor need to be check and store according to its value. Moreover, the use of more manpower needed to sort the resistor in a short time. Therefore, with the development of resistor sorting machine, all the laboratory users can save their time and reduce energy consumption to store the resistor systematically. In order to fulfil the requirement of this project, image processing method was used to detects the colour code of the resistor. Pixy2 camera used as the sensor which performs the task of detecting resistor values based on colour code. For the brain of the system, Aduino Uno was used to process the control condition. Servo FKNIKAL MAL 1, Servo 2, LED and LCD will be controlled by Arduino Uno to perform segregation task. The result shows that it takes less time for the system to sort the resistor compared doing it manually with multimeter. From the data gathered, this machine proves to be efficient as it takes less time to sort the resistor compared to manually sort by human.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deep and sincere gratitude to Madam Rozilawati Binti Mohd Nor, my supervisor of this Bachelor Degree Project (BDP) for the tireless guidance, constructive advices, and limitless support throughout my BDP journey. Without her assistance and encouragement, this project could never be succeed. It was a great privilege and honour to work under her guidance. I am extending my extremely grateful to my beloved parents and siblings for their endless morale support, financially support, and most important thing is their shower of love by sacrifice everything they had to help me get through this phase. I also would like to express my thanks to Muhammad Isa Bin Ishak, Nur Zulyena Binti Mohd Nor Kamar Ariff, Nadiah Izzati Binti Mohd Rafi, Faqihah Binti Harithuddin and all my fellow friends who has help me and supporting me directly or indirectly to get through this journey of completing this Bachelor Degree Project.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

DEC	CLARATION	PAGE iv
APP	PROVAL	v
ABS	TRAK	vi
ARS	TRACT	vii
	ZNOWI EDGEMENT	
		· · ·
TAB	BLE OF CONTENTS	IX
LIST	Γ OF TABLES	xi
LIST	Γ OF FIGURES	xii
LIST	Γ OF APPENDICES	XV
LIST	Γ OF ABBREVIATIONS	xvi
	*AINO	
СНА	pter 1 all introduction	1
1.0	Introduction	1
1.1	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Project Background	1
1.2	Problem Statement	3
1.3	Objective	3
1.4	Scope	3
1.5	Project Significance	4
СНА	APTER 2 LITERATURE REVIEW	5
2.0	Introduction	5
2.1	History of Sorting Machine	5
2.2	Sorting System	8

	2.2.1	Automatic Sorting Machine	8
	2.2.2	Image Processing Method	13
	2.2.3	Auto Range Resistor Sorter	16
2.3	Method of th	ne sorting system	18
2.4	Summary		20
СНАР	PTER 3	METHODOLOGY	22
3.0	Introduction		22
3.1	Project Flow	chart	22
3.2	Resistor Sor	ting Project Development	23
	3.2.1	Project Design	26
	3.2.2	Electrical Design	28
3.3	Design Cont	rol Condition	29
	3.3.1	Colour Recognition	29
	3.3.2	Setting Resistor Value	33
3.4	Software and	l Hardware Analysis	35
	3.4.1	Arduino Uno	36
	3.4.2	Pixy2 Camera	37
	3.4.3	Arduino Software (IDE)	39
	3.4.4	PixyMon	39
3.5	Summary		40

CHAPTER 4 41

4.0	Introduction	41
4.1	Project Development	41
4.2	Operation of Resistor Sorting System	42

	4.2.1	Hardware Operation	42
	4.2.2	Software Operation	45
4.3	Project Ana	llysis	46
	4.3.1	The Accuracy of Colour Detection	46
	4.3.2	Time Taken to Measure and Sort Resistor	50
	4.3.3	Colour Detection Effectiveness with Additional Light	52
	4.3.4	Colour Detection Effectiveness with Magnifying Tool	55
4.4	Summary		57

CHAPTER 5 59

		-
5.1	Introduction	59
5.2	Conclusion	59
5.3	Recommendation for Future Work	60
5.4	Project Potential	60
	اونىۋىرىسىتى تىكنىكا ملىسىا ملاك	
REFE	RENCES 62	
	UNIVEDRITI TEKNIKAL MALAVRIA MELAKA	
	UNIVERSITI TERNIKAL MALATSIA MELAKA	
APPE	NDIX 64	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1: Pixy2 C	Colour Code	31
Table 3.2: Resisto	r Value Code	34
Table 3.3 : Arduin	o Uno Specification	36
Table 3.4: Specific	cation of Pixy2 camera	38
Table 4.1 Colour S	Signature	47
Table 4.2 : Colour	Signature Detecting Result	47
Table 4.3 : The Ef	fectiveness of Using Additional Light	52
Table 4.4 : The Ef	fectiveness of Using Magnifying Tool	55
ملاك	اونيۈم سيتي تيڪنيڪل مليسيا ،	
UNIVE	ERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Human	n Powers Typed Sorting System (Maeda, 2001)	6
Figure 2.2: Shiroya	anagi Drum Typed Sorting Machine (Maeda, 2001)	7
Figure 2.3: The op camera system (M	tical sorting system developed into monochrome camera to aeda, 2001)	RGB 8
Figure 2.4: Autom	atic Sorting Machine Block Diagram (Prasad et al., 2020)	10
Figure 2.5: Block of 2017)	diagram of digital object counter using Microcontroller (Ye	eulkar, 11
Figure 2.6: Sequen	ntial Logic Flow (Russel et al., 2013)	12
Figure 2.7: Prototy	اوينوم سيني شڪر(Dhenge, 2013)	13
Figure 2.8: Image	processing on industrial PC (Clement et al., 2012)	14
Figure 2.9: Inspect	ting yellow apple (Abro & Kumar, 2018)	15
Figure 2.10: Setup	of project (Dhanwate et al., 2019)	15
Figure 2.11: Insert	ing resistor (Paul et al., 2019)	16
Figure 2.12: Measure	urement Process (Paul et al., 2019)	17
Figure 2.13: Dispe	ensing Mechanism (Paul et al., 2019)	17
Figure 2.14: Mobil	le App interface (Paul et al., 2019)	18
Figure 2.15: Manu	ally Fruit Sorting	19

Figure 2.16: Image processing method (Pourdarbani et al., 2015)	20
Figure 3.1: Flowchart of resistor sorting machine prototype using image processing	23
Figure 3.2 : Project Flowchart	25
Figure 3.3 : Full Assembly Design	26
Figure 3.4 : Front View	27
Figure 3.5 : Top View	27
Figure 3.6 : Left View	28
Figure 3.7 : Circuit Design For Resistor Sorting Machine	29
Figure 3.8: Pixy2 Colour Code Tracking	30
Figure 3.9: Code selection	30
Figure 3.10: Colour Code Configuration	31
Figure 3.11: Colour Code Condition Flowchart	32
اويور، سيني بيڪييڪل مليسيا مارڪ	33
UNIVERSITI TEKNIKAL MALAYSIA MELAKA Figure 3.13 : 2.4k Ohm Resistor	33
Figure 3.14 : 6.2k Ohm	34
Figure 3.15: Resistor Value Condition Flowchart	35
Figure 3.16 : Arduino Uno	36
Figure 3.17: Pixy2 Camera	38
Figure 3.18: Arduino IDE Graphical User Interface	39
Figure 3.19: PixyMon graphical user interface	40
Figure 4.1 : Project Prototype	42

Figure 4.2 : Resistor Measure Base	43
Figure 4.3 : Initial Position	43
Figure 4.4 : Alignment Pixy2 Camera and Servo2	44
Figure 4.5 : LCD Display	45
Figure 4.6 : Arduino IDE	45
Figure 4.7 : PixyMon Software	46
Figure 4.8 : 2.4k Ohm Colour Detecting	48
Figure 4.9 : 6.2k Ohm Colour Detecting	49
Figure 4.10 : 10k Ohm Colour Detecting	49
Figure 4.11 : Colour Signature Detection Problem	50
Figure 4.12 : Time Taken To Measure And Sort Resistor	51
Figure 4.13 : Colour Detection with Additional Light	53
Figure 4.14 : Colour Detection Without Additional Light	53
UNIVERSITI TEKNIKAL MALAYSIA MELAKA Figure 4.15 : Detection Problem Without Light	54
Figure 4.16 : Colour Detection With Magnifying Tool	56
Figure 4.17 : Colour Detection Without Magnifying Tool	56
Figure 4.18 : Detection Problem Without Magnifying Tool	57

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Gantt Chart	64
Appendix 2	Coding	65

LIST OF SYMBOLS

Ω - Ohm

Hz Frequency

LIST OF ABBREVIATIONS

IDE	Integrated Development Environment
3D	3 Dimension
DC	Direct Current
IR	Infrared
LCD	Liquid Crystal Display
ANN	Artificial Neural Network
CCL	Six Connected Component Labelling
MLP	Multi-Layer Perceptron
PLC	Programmable Logic Controller
USB OS	Universal Serial Bus
UART	Universal Asynchronous Receiver/Transmitter
ICSP	In Circuit Serial Programming
PWM	Pulse Width Modulation

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter introduces the subject matter and problems being studied, objective and the scope of the project. The problem statement is about the problems that encountered in everyday life while the objective is the target or purpose which enabled the project to be developed. However, there will be limitation in developing this project which will be discussed in this chapter.

1.1 Project Background

Sorting is a process of arranging, grouping, or separating objects between objects systematically. The sorting process usually perform based on the characteristics of the objects such as colours, shapes, and sizes that desired and undesired. Ordering and categorizing are two common types of sorting process. Ordering is arranging items in a sequence ordered by some criterion, while categorizing is grouping items with similar properties.

There are many types of sorting machine that have been invented in this world such as food sorting machine, waste sorting machine, and coin sorting machine. Every machine used different method to detect the characteristic of the object that need to be sort. In this new era, colour sensor systems are increasingly being used in automated applications to detect automation error and monitor quality at the speed of production line. This sorting method is widely use in food industry where they use to the method to detect the colour of the food to determine the quality of the food.

Another type of sorting machine capable of receiving a mixture of different sizes of material and segregating the different sizes into separate group. Whereas the machine is particularly designed to sort headed pins such as screws, bolts, nails, rivets and the like. This type of machine did not need particular sensor to detect the characteristic of an object. Smart waste management system is another example of the system that use sorting process. This system machine is developed to sort out metal, paper, plastics and glass by developing electromechanical system using microcontroller. There are more than 3 sensors used to sort out the waste.

The term object is used in this project is an electrical component that called resistor. A resistor is a passive two-terminal component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. The main categorisation refers to the fact whether a resistor has fixed resistance or a variable resistance. In this project, fixed resistors with two-terminal devices and no polarity are the object that will be used.

The main purpose of this project is to develop a resistor sorting machine prototype using image processing to reduce time consume, the use of manpower and human error. This machine prototype will sort the resistor according to the range of the resistance. Three types of resistors that can be sort for this prototype is 2.4k Ohm, 6.2k Ohm and 10k Ohm. The value of resistor will be measured by using image processor. The image processor will capture the resistor colour code and the system will calculate the range of the resistance based on the colour detected on the resistor.

1.2 Problem Statement

After a lab session, students usually return the resistor and put the resistor back in the container without sorting it according to its resistance value. This will cause problem for the lab assistant as the resistor need to be sort before another group of students when into the laboratory. It is a time-consuming process for the lab assistant as the resistor need to be check and sort according to its value. The use of more manpower needed to sort the resistor in a short time. Moreover, the small size of the resistor can lead to human error.

1.3 Objective

 To develop an automatic resistor sorting machine prototype using Arduino.
To design an image processing system for sorting mechanism.
To analyze the effectiveness of the proposed method for sorting purpose.

1.4 Scope VERSITI TEKNIKAL MALAYSIA MELAKA

This prototype machine use image processing method for sorting mechanism. Instead of using multimeter to measure the value of the resistor, this system mainly used Pixy2 camera to determine the resistor colour code. Moreover, Arduino Uno works as the brain of this system to perform control task. PixyMon and Arduino IDE are the list of software that will be used in the developing phase of the system. This prototype machine design to sort only 4 band resistor and limited to 3 different range of resistance which is 2.4K Ohm, 6.4k Ohm and 10k Ohm.

1.5 **Project Significance**

The purpose of this project is to improve the efficiency of sorting resistor by reducing manpower and time consumed to complete the task. By reducing manpower, this also helps to reduces the risk of human error as human have limited energy. This machine prototype will automatically sort the resistor into different box based on its respective value. Furthermore, measure the resistor value by using image processing method is the innovation of this project. Lastly, the target of this project is to help the lab assistance, lecturer, and student to sort the resistor especially after the lab session.

