

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF EEG EPILEPSY RECOGNITION SYSTEM USING ARTIFICIAL NEURAL NETWORK

DILAH BIN IT YAHYA B071710361 960128-05-5042

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF EEG EPILEPSY RECOGNITION SYSTEM USING ARTIFICIAL NEURAL NETWORK

Sesi Pengajian: 2021

ALAYSIA

Saya ADILAH BINTI YAHYA mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA SULIT* RAHSIA RASMI 1972. Mengandungi maklumat TERHAD yang telah ditentukan oleh TERHAD* organisasi/badan di mana penyelidikan dijalankan. TIDAK \mathbf{N} **TERHAD** Yang benar, Disahkan oleh penyelia: Ts. KHAIRUL AZHA BIN A AZIZ ADILAH BINTI YAHYA ہ درہ Alamat Tetap: Cop Rasmi Penyelia Ts. KHAIRUL AZHA BIN A AZIZ No. 54 Jalan 9, Pensyarah Kanan Jabatan Teknologi Kejuruteraan Elektronik Dan Komputer Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik Kampung Bukit Temiang, Universiti Teknikal Malaysia Melaka 70200, Seremban, NSDK.

Tarikh: 13 February 2021

Tarikh: 14 February 2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menya**tia**kan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF EEG EPILEPSY RECOGNITION SYSTEM USING ARTIFICIAL NEURAL NETWORK is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours. The member of the supervisory is as follow:

Signature: Supervisor : Ts. KHAIRUL AZHA BIN A AZIZ Ts. KHAIRUL AZHA BIN A AZIZ Pensyarah Kanan Jabatan Teknologi Kejuruteraan Elektronik Dan Komputer Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik Universiti Teknikal Malaysia Melaka UNIVERSI Signature: Co-supervisor: Ts. NADZRIE BIN MOHAMOOD Ts. NADZRIE BIN MOHAMOOD Jurutera Pengajar Kanan Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka

ABSTRAK

Epilepsi diklasifikasikan sebagai salah satu gangguan berkaitan otak yang mempengaruhi keseluruhan sistem saraf otak dan ini disebabkan oleh gelombang otak yang mengalami perubahan voltan berfrekuensi tinggi, atau disebut sebagai sawan. Penyakit ini adalah salah satu pergerakan tidak terkawal yang dilakukan oleh pesakit epilepsi tanpa sedar. Oleh itu, kajian tesis ini adalah untuk membangunkan sistem pengecaman epilepsy dengan menggunakan Rangkaian Neural Buatan (ANN). Teknik Rangkaian Neural Cascade-forward digunakan dalam pembelajaran mesin sebagai alat utama untuk melaksanakan proses persis otak manusia. Sistem ini diilhamkan dengan bertujuan untuk mencipta kembali cara pemikiran otak manusia. Tesis ini menggunakan Rangkaian Neural Cascade-forward yang sangat mirip dengan Rangkaian Neural Feed-Forward dan kemudian prosedur pengecaman epilepsi ini dilaksanakan dengan menggunakan perisian MATLAB. Selain itu, kajian ini juga menggunakan elektroensefalogram (EEG) yang kemudiannya digunakan untuk mendiagnosis dan mengakses aktiviti didalam otak manusia dengan menggunakan set data yang diperoleh dari University of Bonn (UBonn), yang telah banyak digunakan oleh penyelidik lain mengenai kajian epilepsi ini. Penderia MindLink EEG digunakan untuk memperoleh data luaran dari isyarat EEG, yang kemudian diperlukan untuk menguji di jaringan saraf. Hasilnya, sistem ini berjaya dilaksanakan dengan 79.4% untuk ketepatan keseluruhan dengan latihan, pengesahan dan pengujian secara berurutan dengan memperoleh 79.4%, 88.0% dan 70.3%.

ABSTRACT

Epilepsy classified as one of the brain-related disorders affecting the entire brain nervous system and characterized by the high-frequency and high-voltage brain waves, which called as a seizure. This disease recognized as one of the uncontrollable movements made by the epilepsy patients during an outbreak which can cause consciousness and convulsion. Consequently, this thesis studies are to develop EEG Epilepsy Recognition System using Artificial Neural Network (ANN). Cascade-Forward Neural Network technique is used as their primary tools which their system invented to execute a process like a human brain. This brain-inspired system which meant to recreate the way human brains thinks. This thesis uses Cascade-forward Neural Network, which is quite similar to the Feed-forward Neural Networks approach and proposes the epilepsy recognition procedure implemented by using MATLAB software. Additionally, this study also used the Electroencephalogram (EEG) signal which then used to diagnose and accessing human brain activity and disorder by using the dataset obtained from University of Bonn (UBonn), which has been widely used by other researchers regarding epilepsy studies. The MindLink EEG Sensor is used to obtained external data of the EEG signal, which then needed to test in the neural network. As for results, this system successfully carried out with 79.4% for overall accuracy with training, validation and testing sequentially acquire 79.4%, 88.0% and 70.3%.

DEDICATION

This thesis is dedicated to Yahya Bin Yusof and Maszalinah Binti Ruslan, my beloved parents for their constant love, encouragement, and inspiration. To my supervisor Encik Khairul Azha Bin A. Aziz who never giving up to taught and guide me to complete my thesis. To my beloved siblings Masliya Binti Yahya, Yamim Bin Yahya and Marita Binti Yahya who always keep supporting me. To my best friend, Ainnur Annisa Binti Noor Izan, thank you for always be there for me.

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim,

In the name of Allah, the Most Gracious and the Most Merciful. All the praises to Allah, the Lord of the 'Alamin (mankind, jinns and all that exists).

First and foremost, Alhamdulillah thanks to Allah for giving me good health, spirit, patience, determination and blessing me far more than I deserve. Without Him I would not be able to complete my dissertation in time.

Secondly, I would like to express my gratitude and appreciation to my supervisor, Encik Khairul Azha Bin A. Aziz for his guidance, support, encouragement, advise and most importantly for not giving up on me during the completion of this thesis.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Last but not least, I sincerely would like to express my thanks to all my beloved friends, for their supports and encourage me to complete this thesis successfully. Without their supports and love, I may have a difficulty to complete my thesis. To all whom ever know me and help me directly and indirectly, thank you so much and may Allah bless us all.

TABLE OF CONTENTS

ТАВ	BLE OF CONTENTS	PAGE x
LIST	Γ OF TABLES	xiv
LIST	Γ OF FIGURES	xvi
LIST	Γ OF APPENDICES	xix
LIST	Г OF SYMBOLS	XX
LIST	T OF ABBREVIATIONS	xxi
CHA	APTER 1 INTRODUCTION	1
1.1	Overview	1
1.2	اونيوم سيتي تيڪنيڪل موProject Background	1
1.3	Problem Statement TEKNIKAL MALAYSIA MELAKA	3
1.4	Project Objectives	4
1.5	Project Scope	5
CHA	APTER 2 LITERATURE REVIEW	6
2.1	Overview	6
2.2	Background	6
2.3	EEG Brain Sensors	10
	2.3.1 NeuroSkyMindset Sensor	10

2.4	Recognition System for EEG Epilepsy	13
2.5	Types of Signal Processing	14
	2.5.1 Discrete Wavelet Transform (DWT)	14
	2.5.2 Continuous Wavelet Transform (CWT)	16
2.6	Classifier	18
	2.6.1 CNN Method	19
	2.6.2 RNN Method	22
	2.6.3 ANN Method	25
	2.6.4 Summary Table Example	30
2.7	Summary	35
СНАР	TER 3 METHODOLOGY	37
3.1	Project Overview	37
3.2	Project Description and Block Diagram	37
3.3	Methodological Procedures	41
	3.3.1 Real-Time Raw EEG Epilepsy Dataset	41
3.4	Hardware Implementation	44
	3.4.1 MindLink EEG Sensor	44
3.5	Software Implementation	46
3.6	Process Flowchart	53
3.7	Outcome	58

5.2

Conclusion

СНАР	TER 4 RESULTS	60
4.1	Overview	60
4.2	Analysis Results for Raw EEG Dataset from UBonn	60
4.3	Analysis Before Transform Dataset Into Sub-Band Using DWT	67
4.4	Analysis by Changing the Number of Neurons in Cascade-forward Neural	68
	Network Hidden Layer in MATLAB	
4.5	Analysis on Using Pattern Recognition Network To Compare With	73
	Cascade-forward Neural Network	
4.6	Result Real-Time Brainwave Data By Using MindLink EEG Sensor	77
4.7	Analysis By Testing The Real-Time EEG Brainwave Data	81
4.8	اونيوم سيتي تيڪنيڪل مليسيا ملاك	83
4.9	Overall Project DesignEKNIKAL MALAYSIA MELAKA	85
СНАР	TER 5 CONCLUSION	86
5.1	Overview	86

59

86

5.3	Future Work and Recommendations	87
5.4	Project Potential	88

REFERENCES	90

xii

APPENDIX

LIST OF TABLES

TABLE	TITLE	PAGE
<u>CHAPTER 2</u>		
Table 2.1:	Types of brain lobes and its functions	7
Table 2.2:	Comparison of Brain Signal Type	12
Table 2.3:	Comparison of Summary Previous Research Paper	31
Table 2.4:	Comparison of Software used in previous study	34
CHAPTER 3	ALAYSIA 44	
Table 3.1:	The details of epilepsy dataset from University of Bonn	38
Table 3.2:	Categories of raw EEG database University of Bonn	42
Table 3.3:	EEG Dataset description	43
Table 3.4:	Example of coefficient of DWT and their types of EEG wavefor	rm 46
Table 3.5:	Example of target dataset for each five raw dataset	47
CHAPTER 4	ERSITI TEKNIKAL MALAYSIA MELAKA	
Table 4.1:	Overall steps results shows in table	63
Table 4.2:	Overall steps results shows in table	64
Table 4.3:	Target dataset used for (8 x 500) matrix	65
Table 4.4	The results summary for different number of hidden neurons w	ith 71
	percentage of training, validation, testing overall accuracy	
Table 4.5:	The results summary for Pattern Recognition Network	73
Table 4.6:	The real-time brainwave MindLink EEG wavelength results	80

taken in the range between ten minutes.

LIST OF FIGURES

FIGURE	TITLE	PAGE
<u>CHAPTER 2</u>		
Figure 2.1:	Comparison of brain signal type	7
Figure 2.2:	Electrodes settlement to measure EEG signals	8
Figure 2.3:	NeuroSkyMindset Sensors	10
Figure 2.4:	The GUI one of the NeuroSky MindWave epilepsy for early	14
and the second s	detection	
Figure 2.5	Framework based on the method used	16
Figure 2.6:	Process research of the previous study EEG using CWT	17
Figure 2.7:	Sample of scalogram changes for each set of segments	18
Figure 2.8:	اويتومرسيني تيڪني Illustration of the CNN	20
Figure 2.9:	Block diagram process of CNN_AYSIA MELAKA	21
Figure 2.10:	RNN network and Feed-Forward network	22
Figure 2.11:	Block diagram process of RNN	24
Figure 2.12:	ANN Input, Hidden and Output layers	26
Figure 2.13:	Block diagram process of ANN	27
Figure 2.14:	Block diagram process of ANN	29
CHAPTER 3		
Figure 3.1:	The epilepsy stages	39

Figure 3.2:	General block diagram of Cascade Recognition Network	40
	epilepsy detection system	
Figure 3.3:	The EEG sensor connected by using Arduino Uno and	44
	Bluetooth Module	
Figure 3.4:	The flowchart of the EEG sensor step process	45
Figure 3.5:	The MindLink EEG sensor is wear and connected via Bluetooth	45
	Module through Arduino and computer	
Figure 3.6:	The pattern recognition neural network (view) in MATLAB	48
Figure 3.7:	Details flow process to produce confusion matrix and plotting	50
	ROC	
Figure 3.8:	The process flowchart of MATLAB R2020a	51
Figure 3.9	Arduino IDE interface	52
Figure 3.10:	PLX-DAQ v2.11 transferred data from sensor to Excel	53
Figure 3.11:	The process flowchart of this thesis	56
Figure 3.12:	The process flowchart of this thesis continues	57
CHAPTER 4	ERSITI TEKNIKAL MALAYSIA MELAKA	
Figure 4.1:	The raw data downloaded from official website of UBonn	61
Figure 4.2:	After extracting the raw data	61
Figure 4.3:	Each set contains of 100 of type of text file which consist of	61
	4097 samples of one EEG time series in ASCII code	

- Figure 4.4:The raw data transferred from text file to Excel file62Figure 4.5:Set F after being transform to DWT which then gives 862sub-band waves62
- Figure 4.6:Input data used is (8 x 500) matrix while target data used is65

is (5 x 500) matrix

Figure 4.7:	Confusion matrix with fifteen hidden neuron	66
Figure 4.8:	Confusion matrix analysis before transform the dataset into	67
	sub-band	
Figure 4.9:	Process flow for Cascade-forward Neural Network training data	68
Figure 4.10:	Confusion matrix by using fifteen hidden neurons	69
Figure 4.11:	Confusion matrix by using ten hidden neurons	70
Figure 4.12:	The graph accuracy of different number of hidden neuron	72
Figure 4.13:	The graph accuracy of different number of hidden neurons using	74
	Pattern Recognition System	
Figure 4.14:	Confusion matrix of Pattern Recognition by using neuron eleven	75
Figure 4.15:	Confusion matrix of Pattern Recognition using neuron ten	76
Figure 4.16:	The data reading which display on Serial Monitor in Arduino	78
1. I.	Software	
Figure 4.17:	The data reading which display on Serial Monitor in Arduino	79
UNIV	Software TEKNIKAL MALAYSIA MELAKA	
Figure 4.18:	The graph of brainwave wavelength in the range between ten	81
	minutes	
Figure 4.19:	Output results for Testing and indices of the real-time data	82
	after simulating by using Cascade-forward Neural Network with	
	EEG real-time dataset	
Figure 4.20:	The process flows design of this thesis	85

LIST OF APPENDICES

TITLE

PAGE

APPENDIX

Confusion Matrix When Change 10 To 20 Hidden Neuron in	93
Cascade-forward Neural Network	
Confusion Matrix When Change 10 To 20 Hidden Neuron in	96
Pattern Recognition Network	
Programming Coding for the System	99
لا توني مي تيكنيكل مليسيا م	
	<text><text><text><text></text></text></text></text>

LIST OF SYMBOLS

GNDJNIVER Ground EKNIKAL MALAYSIA MELAKA

- **RX** Receiver
- TX Transmitter
- *a* Scaling Parameter
- *b* Location of the Parameter
- % Percentage

LIST OF ABBREVIATIONS

EEG	Electroencephalogram
MIT	Massachusetts Institute of Technology
CNN	Convolutional Neural Network
СНВ	Children's Hospital Boston
CWT	Continuous Wavelet Transform
BoW	Bags-of-Words
SVM	Support Vector Machine
DWT	Discrete Wavelet Transform
FET	Fast Fourier Transform
AR	Autoregressive or Autoregression
MLPNN	Multilayer Perceptron Neural Network
ANFIS	Adaptive Neuro-Fuzzy Interference System

KDD VERSKnowledge Discovery in Database AMELAKA

- **RNN** Recurrent Neural Network
- LSTM Long-Short-Term Memory
- **GRU** Gated-Recurrent Unit
- **STFT** Short-time Fourier Transform
- WT Wavelet Transform
- GPS Global Positioning System
- ANN Artificial Neural Network
- **UBonn** University of Bonn

MATLAB	Matrix Laboratory	
GUI	Graphical User Interface	
2D	2-Dimensional	
WT	Wavelet Transform	
DNA	Deoxyribonucleic acid	
FC	Fully Connected Layer	
ASCII	American Standard Code for Information Interchange	
PLX-DAQ	Parallax Data Acquisition	
IDE	Integrated Development Environment	
ROC	Receiver Operating Characteristic	
perf	Performance	
COMM	Component Object Model	
USB	Universal Serial Bus	
stable لي	اونيوم سيتي نيڪ Standard Deviation	
	Internet of Things MALAYSIA MELAKA	
AIS	Artificial Immune Network	

CHAPTER 1

INTRODUCTION

1.1 Overview

In reality, this chapter actually explain about the description for a project summary. The contents under this chapter is including Project Background, Statement of the Purposes, Problem Statement and Project Scope. By going through this part, the reader should be able to understand the core concept of this thesis.

1.2 Project Background

Epilepsy is classified as one of the brain-related disorders affecting the entire brain nervous system and it is characterized by the high-frequency and high-voltage brain waves which is called as seizure. These seizure puts patients at a higher risk for injuries such as falls, head injuries, scrape, burns, and many others. This is due to abrupt seizure and leaving the patient without any further notice. This Epilepsy condition affects 50 million people all around the world and mostly 90% of the epilepsy patients live in countries looking to be advance and around three of fourth of them are unable to get the proper and suitable treatment (Hekim, 2012). Until now there is still no cure for the disease and only can be treated with medications and surgery.

Electroencephalogram (EEG) is one of the devices or instruments that specially measures the electrical activities generated by firing of neurons along the scalp within the brain. EEG is a non-invasive, cost effective, well-established, and accurate procedure used to diagnose brain-related disorders such as epilepsy, autism, brain tumours and depression. EEG reads changes in the brain voltage between electrodes which are positioned on some crucial points of the patient's head with some help of proper mechanical and electrical support. Hence, the EEG signal data collected is send to the main EEG system and saves the signals produced (Alqatawneh *et al.*, 2019).

Epilepsy raw database is obtained from the Department of Epileptology at University of Bonn in Germany (UBonn). The EEG raw dataset then is analysed completely by using Discrete Wavelet Transform (DWT). The DWT then is separated into 8 sub-band frequencies which is delta, theta, low alpha, high alpha, low beta, high beta, high gamma and low gamma. According to the psychological studies, frequency which is more than 60 Hz is regarded as noise and can be neglected (Abdullah, Rahim and Ibrahim, 2012). The method of classifying Artificial Neural Network (ANN) is used to do mathematical processes such as calculation, decision-making, and learning. Based on the human biological neural network (Jaafar, Mohamood and Mahdi, 2018).

ANNs are commonly used in the identification of signal groups in many biomedical signal analyses, as they have a greater predictive ability than the techniques of signal analysis. Therefore, they provide useful advice for making a medical diagnosis decision (Hekim, 2012). In this study, we demonstrate analysis of EEG signals using ANN by MATLAB neural network toolbox. The main purpose of this paper to illustrate the potential use of ANN to classify between normal persons and those who suffer from epilepsy by evaluating the EEG parameter data.