DEVELOPMENT OF A REAL-TIME IOT BASED AIR POLLUTION MONITORING WITH NOTIFICATION SYSTEM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA DEVELOPMENT OF A REAL-TIME IoT BASED AIR POLLUTION MONITORING WITH NOTIFICATION SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Electronic

By

Industry) with Honours.

NUR SYAHIRAH BINTI KAMARUZAMAN

B071710379

960224-08-5540

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2021

UTEM وينوسيتي تيكنيكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF A REAL-TIME IoT BASED AIR POLLUTION MONITORING WITH NOTIFICATION SYSTEM

Sesi Pengajian: 2020

Saya NUR SYAHIRAH BINTI KAMARUZAMAN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat- syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

	SULIT*	Mengandungi kepentingan M RAHSIA RAS	alaysia seba		-			atau KTA
	TERHAD*	Mengandungi i organisasi/bada					ıkan ole	eh
⊠	TIDAK TERHAD							
NUR KAM Alama No 15	SYAHIRAH E ARUZAMAN at Tetap: b, Persiaran Hu ar Baru Putra,	INTI على الله الله الله الله الله الله الله ال	DR Cop	Rasmi R. IDA S	Penyelia YAFIZA BI YAFIZA BINTI PENSYARAH NOLOGI KEJUN ELEKTRON TEKNIKAL MAL	NTI MI	AN	
), Ipoh, Perak.				3/2/2021			
	h: 14/02/2021	ini SULIT atau				'	1- ' '	
Pihak be	*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada Pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM perlu dikelaskan sebagai SULIT atau TERHAD.					a		

DECLARATION

I declare that this Choose an item. Entitled "DEVELOPMENT OF A REAL-TIME IoT BASED AIR POLLUTION MONITORING WITH NOTIFICATION SYSTEM" is the result of my own research except as cited in the references. The Choose an item has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
	ALL MALAYSIA
Name	: <u>NUR SYAHIRAH BINTI KAMARUZAMAN</u>
Date	: 14/02/2021
Dute	Aniun =
	اونيوم سيتي تيكنيكل مليسيا ملاك
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a fractional satisfaction of the prerequisites for the level of Bachelor of Electronic Engineering Technology (Electronic Industry) with Honours. The individual from the administrative is:

ABSTRACT

Air pollution can cause long-term health effects to humans such as heart disease, lung cancers, and respiratory disease. There are many forms of contamination induced by smoke or gas emissions. These are triggered by fossil fuel burning due to motor transport. Furthermore, the manufacturing and construction operations also give an impact on the air quality. The economic growth of the region, which relies on manufacturing industries such as plastics, electronics, and rubber, has contributed to a rise in organic and inorganic carbon, plastics, and dust contaminations. Therefore, this project will develop an air pollution monitoring system using long-range (LoRa) communication technology. Several gas sensors such as MQ2, MQ7, and MQ135 are used to monitor the level of air pollution. The principal component of this project is Arduino Uno. The Arduino Uno will be used at the transmitter to monitor the air quality with the aid of several gas sensors connected to it and the data will be sent to the receiver using the LoRa communication module. Meanwhile, the data received at the receiver will be displayed at the LCD and stored in the cloud. Besides that, the data will be display on the Node-RED dashboard while the notification system will receive through the Telegram application.

ABSTRAK

Pencemaran udara merupakan satu permasalahan yang sering dihadapi oleh masyarakat. Pelbagai jenis punca pencemaran yang disebabkan oleh pembebasan asap atau gas diudara. Antaranya disebabkan oleh pembakaran bahan api fosil disebabkan oleh pengangkutan bermotor. Selain itu, aktiviti perindustrian dan pembangunan juga memberi impak terhadap pencemaran udara. Pembangunan ekonomi negara yang bergantung kepada industri pembuatan seperti bahan kimia, elektronik dan juga getah telah menyebabkan penambahan kepada berlakunya pencemaran gas organik dan bukan organik, bahan kimia dan habuk. Contoh pelepasan gas diudara adalah berasaskan nitrogen dan sulphur. Manakala, asap yang mengandungi sulphur dioksida dan hidrokarbon pula dilepaskan oleh kilang penapis minyak. Oleh hal yang demikian, projek ini dilaksanakan bertujuan menghasilkan sistem bagi memantau pencemaran udara dengan mengunakan (LoRa) dan beberapa penderia gas seperti MQ 2, MQ7 dan MQ135. Arduino Uno dia guna kan sebagai komponen utama dalam projek ini. Arduino Uno akan disambungkan dengan beberapa penderia gas dan juga LoRa pada bahagian pemancar. Pada bahagian penerima pula, Arduino Uno akan disambungkan dengan LCD, LoRa dan juga komputer. Data akan dihantar dengan menggunkan modul LoRa. Selain itu, data akan dipaparkan dalam Node-Red dan sistem notifikasi akan diterima melalui aplikasi Telegram.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved parents Kamaruzaman Bin Yaakub and Mahnum Binti Yusoff, My great supervisor Dr Ida Syafiza Binti Md Isa and my lovely siblings. Thank you, everyone.

ACKNOWLEDGEMENTS

In the Name of ALLAH, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer for everything I have received since the beginning of my life. I would like to extend my appreciation to the Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform.

My utmost appreciation to my parents Kamaruzaman Bin Yaakub and Mahnum Binti Yusoff who have been the pillar of strength in all my endeavors. Thank you to my great supervisor Dr Ida Syafiza Binti Md Isa for the guide and knowledge for completing this project. Thank you to my friends for your support and help either directly or indirectly in completing this thesis and project. Thank you.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

NO	TITLE	PAGE
1	DECLARATION	iii
2	APPROVAL	iv
3	ABSTRACT	V
4	ABSTRAK	vi
5	DEDICATION	vii
6	ACKNOWLEDGEMENTS	viii
7	TABLE OF CONTENTS	ix
8	LIST OF TABLES	xii
9	LIST OF FIGURES	xii
10	LIST OF APPENDICES	XV
11	LIST OF SYMBOLS	
12	LIST OF ABBREVIATIONS	
13	CHAPTER 1: INTRODUCTION	1
14	1.1 Introduction	1
15	1.2 Background of study	1
16	1.3 Problem Statement	2
17	1.4 Objectives	3
18	1.5 Scope of research	3
19	1.6 Organization	3
20		
21	CHAPTER 2: LITERATURE REVIEW	5
22	2.1 Introduction	5
23	2.1.1 A Smart Air Pollution Monitoring System	5
24	2.1.2 Air Pollution Monitoring System based on Geosensor Network	6
25	2.1.3 Air Pollution Monitoring System	9
26	2.1.4 Real-Time wireless air Pollution monitoring System	10
27	2.1.5 Air Pollution Monitoring System Using LabVIEW	12
28	2.1.6 WSN for Air Pollution Monitoring System	14
29	2.1.7 IoT based Air Pollution Monitoring System	14

30	2.1.8 IoT Based Air Pollution Monitoring System Using Arduino	15
31	2.1.9 Design and Implementation of an Automated and Decentralized	16
	Pollution Monitoring System with Blockchains, Smart Contracts, and	
	LoRaWAN	
32	2.1.10 Air Pollution Monitoring Using ZigBee in WSN	17
33	2.2 HARDWARE	19
34	2.2.1 GAS SENSOR	
35	2.2.1.1 MQ135 gas sensor (air quality: CO, ammonia,	19
	Benzene, alcohol, smoke)	
36	2.2.1.2 MQ2 gas sensor (smoke)	19
37	2.2.1.3 MQ7 gas sensor (carbon monoxide)	20
38	2.2.1.4 MQ 5 gas sensor (LPG and methane)	21
39	2.2.2 Microcontroller	21
40	2.2.2.1 Arduino Uno	22
41	2.2.2.2 Arduino Mega	22
42	2.2.2.3 Raspberry Pi	23
43	2.2.3 Communication Protocol	24
44	2.2.3.1 LoRa	24
45	2.2.3.2 Wi-Fi	25
46	2.2.3.3 ZigBee	25
47	UNIVE 2.2.3.4 Bluetooth KAL MALAYSIA MELAKA	26
48	2.3 SUMMARY	26
49	CHAPTER 3: METHODOLOGY	27
50	3.1 Introduction	27
51	3.2 Project Planning	27
52	3.2.1 Project Workflow	28
53	3.3 The development of an air pollution system to monitor the air	29
	quality in industry by using LoRa.	
54	3.4 Hardware Configuration	32
55	3.4.1 Arduino Uno R3	32
56	3.4.2 LoRa module	35
57	3.4.3 Liquid Crystal Display (LCD) module	38

58	3.4.4 Gas Sensor	39
59	3.4.4.1 MQ2 gas sensor (smoke)	39
60	3.4.4.2 MQ7 gas sensor (carbon monoxide)	40
61	3.4.4.3 MQ135 gas sensor (air quality: CO, ammonia,	41
	Benzene, alcohol, smoke)	
62	3.5 Software Configuration	42
63	3.5.1 Arduino IDE	43
64	3.6 Project Construction	44
65	3.7 Project Implementation Stages	46
66	3.7.1 Development Tool	46
67	3.8 Hardware	46
68	3.9 Software	48
69	3.10 Tera Term	54
70	3.11 Summary	56
71	CHAPTER 4: RESULT AND DISCUSSION	57
72	4.1 Introduction	57
73	4.2 Project Coding	57
74	4.3 Project Analysis	59
75	4.4 Summary	71
74	CHAPTER 5: CONCLUSION AND RECOMMENDATION	74
	5.1 IntroductionTI TEKNIKAL MALAYSIA MELAKA	74
	5.2 Conclusion	74
	5.3 Recommendation for Future Work	74
75	REFERENCES	76
76	APPENDIX	79

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1	Specification or Arduino Uno R3	35
Table 3.2	Pin configuration of LoRa and its function	37
Table 3.3	Pin configuration of LCD and its function	39
Table 3.4	MQ2 pinout	40
Table 3.5	MQ7 pinout	41
Table 3.6	MQ135 pinout	42
Table 4.1	Air Quality Index	60
Table 4.2	Result for MQ2 in PPM for different range	60
Table 4.3	Result for MQ7 in PPM for different range	62
Table 4.4	Result for MQ135 in PPM for different range	63
Table 4.5	RSSI value in dBm for different range	62
Table 4.6	Result of different material been tested	69
	ann -	
رك ع	اونيوم سيتي تيكنيكل مليسياً مل	
UNI	VERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	The Proposed air pollution measuring system block	6
	diagram	
Figure 2.2	The architecture of the air pollution monitoring system	7
Figure 2.3	Wireless sensor Network Installation to Control Air	9
	Quality	
Figure 2.4	WSN using Matlab execution	10

Figure 2.5	Multihop mesh network device architecture for wireless	11
	control of the emissions in real-time	
Figure 2.6	Sensor node architecture	13
Figure 2.7	Circuit Diagram of IoT based air pollution monitoring	16
	system using Arduino	
Figure 2.8	Implemented Block Diagram	18
Figure 2.9	MQ135 gas sensor	19
Figure 2.10	MQ2 gas sensor	20
Figure 2.11	MQ7 gas sensor	20
Figure 2.12	MQ5 gas sensor	21
Figure 2.13	Arduino Uno R3 board	22
Figure 2.14	Arduino Mega board	24
Figure 2.15	Raspberry Pi module	23
Figure 2.16	LoRa module	24
Figure 2.17	Wi-Fi board	25
Figure 2.18	ZigBee board	25
Figure 2.19	Bluetooth board	26
Figure 3.1	Research Flow Chart	28
Figure 3.2	Block diagram of the project	30
Figure 3.3	Flow Chart of the system	31
Figure 3.4 NIVE	Frond View of Arduino Uno R3 YSIA MELAKA	32
Figure 3.5	Pinout of Arduino Uno R3	33
Figure 3.6	Front view of LoRa shield	35
Figure 3.7	Overview of LCD display and pin configuration	38
Figure 3.8	MQ2 gas sensor	39
Figure 3.9	MQ 7 gas sensor	40
Figure 3.10	MQ 135 gas sensors	42
Figure 3.11	Arduino IDE software	43
Figure 3.12	Transmitter Circuit Diagram	44
Figure 3.13	Receiver Circuit Diagram	45
Figure 3.14	Receiver Hardware connected to PC	47
Figure 3.15	Transmitter of the project with the supply from power	47
	bank	

Figure 3.16	Coding example for transmitter	49
Figure 3.17	Example of serial monitor	49
Figure 3.18	Command prompt window to start the Node-Red	49
Figure 3.19	IP address to access Node-Red from command prompt	50
Figure 3.20	Node-Red window	50
Figure 3.21	Node-Red dashboard	50
Figure 3.22	Telegram bot	51
Figure 3.23	Node-Red palette	52
Figure 3.24	Telegram Token	52
Figure 3.25	Telegram ID to communicate Node-Red to Telegram	53
Figure 3.26	Example of the notification from Telegram	54
Figure 3.27	Tera Term result display	55
Figure 4.1	Library for transmitter	57
Figure 4.2	Library for receiver	58
Figure 4.3	Setup and Initializing Radio	58
Figure 4.4	Transmission Code	58
Figure 4.5	Receiver Code	59
Figure 4.6	Graph for MQ2 in PPM for different range	61
Figure 4.7	Graph for MQ7 in PPM for different range	62
Figure 4.8 NIVE	Graph for MQ135 in PPM for different range AKA	62
Figure 4.9	RSSI value in dBm for different range graph	65
Figure 4.10	Transmitter Hardware at 400-meter range	67
Figure 4.11	Transmitter hardware at 500-meter range	68
Figure 4.12	Transmitter hardware at 600-meter range	68
Figure 4.13	Result display in Node-Red dashboard	70
Figure 4.14	Sample of data log	71

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Gantt Chart	79
Appendix B	Coding for transmitter	82
Appendix C	Coding for receiver	83
Appendix D	Turnitin Results	88

CHAPTER 1

INTRODUCTION

1.1 Introduction

Global air contamination has gotten a significant issue that undermines our planet. It has a few unfriendly consequences for human wellbeing and the living biological system in general. Air is one of the basic components of man's environment. The world's environment is brimming with air-carrying pollutants for example nitrogen, oxygen, carbon monoxide, and hints of some uncommon components. People required an environment of air that is liberated from pollution. This is significant for human life and wellbeing. Any adjustment in the common organization of air may make grave mischief to living things on earth. Air contamination is the nearness of at least one contaminant in the air can hurt people, creatures, and plant.

The main target of this study is to develop an air-polluting monitoring system to monitor the air quality by using low range (LoRa) communication protocol. This is because alerting people to any risky circumstance is important as prevention is better than cure. It can reduce harm and the cost for health treatment as the proposed air pollution monitoring system using LoRa can monitor air pollution in a wide area network to give an alert to people in that area for precaution.

1.2 Background of study

Air pollution can give a big impact on our life that poses many challenges to the planet's ecosystem and environment. Exceptionally obvious in the dire need to control the air quality, inferable from extended industrial activities over the past years. People

ought to understand the impact of the air pollution ecosystem. For those who work in a factory are to be even more at risk of inhaling hazardous substances and pollutants because of their sustained exposure to pollution. Because of that awareness and safety precaution should be taken before any risky circumstance happen. This work focused on the development of the air pollution monitoring system to monitor the air quality by using LoRa technology. Besides that, several types of gas sensors are used in the developed system to monitor the level of the air quality.

LoRa (Long Range) is a secured electronic remote designed by Cycleo of Grenoble, France that is used in the Internet of Things (IoT) development. It was picked up by Semtech in 2012, which holds the IP for the LoRa transmission structure. LoRa transmits over permit free sub-gigahertz radio repeat bunches. The transmissions range of more than 10 km in rural regions are enabled by LoRa since a long time ago with low force utilization.

1.3 Problem Statement

Malaysia should be stressed on the importance of having an air pollution system as there are many health cases related to air pollution due to the industry's chemical substance. For instance, in March 2019 thousands of people were hospitalized because of the disposing of a toxic incident in Sungai Kim Kim in Pasir Gudang which resulted in air pollution. Also, due to this, many educational institutions in the nearby area had to shut down their operation for three months as many people in that institution had been affected due to the air pollution. Therefore, developing an air pollution monitoring system would make industry players progressively mindful in dealing with consistent practices at the plants.

1.4 Objective

The objective for this project are:

- I) To develop an air pollution monitoring system to monitor the air quality by using long-range (LoRa) communication technology.
- II) To develop a data logging system to record real-time gas data for monitoring.
- III) To analyses the reliability of the developed system considering different types of gas sensors.

1.5 Scope of research

The scope of this project is to focus on the development of air pollution monitoring systems to monitor air quality by using LoRa communication module. Several gas sensors such as MQ2, MQ7, and MQ135 to detect several types of gas such as smoke, carbon monoxide, ammonia, benzene, and alcohol respectively are used to determine the status of air quality. Besides, the performance of the system is evaluated in terms of a data logging system and reliability to send a notification to people in case of an emergency in real-time.

1.6 Organization

This project focus on developing an air pollution monitoring system to monitor the air quality by using LoRa as the communication method (LoRa) between the transmitter and receiver. The thesis comprises of the five chapters. Chapter 1 present the introduction related to the air pollution system, objective, problem statement, background of the project, scope of the research, and the expected results. Chapter 2 presents the literature review related to the current air pollution monitoring system using different communication technology and working system. In chapter 3, the methodology and components used in this thesis are presented. Also, the workflow of this project such as

the Gantt chart is included. In chapter 4 presents the outcomes that have been recorded and explored from the examination. Lastly, chapter 5 presents the conclusion of this thesis.

CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

This chapter presents the literature review related to the development of the air monitoring system. Air pollution is harmful to living things and the environment. Air pollution happened due to the release of toxic or harmful pollutants into the air. Air emissions that contain contamination (i.e., carbon monoxide, sulphur dioxide, nitrous oxides, methane, and chlorofluorocarbons), particulate matter (i.e. both organic and inorganic), and biological molecules can cause diseases, asthma, and even death to the living human. Air Pollutant Index (API) in Malaysia is partitioned into five classes which are good, moderate, unhealthy, very unhealthy, and serious.

2.1.1 A Smart Air Pollution Monitoring System [1]

Every year, there are half a million children below five years old died from respiratory infections due to indoor/outdoor pollution and second-hand smoke.

Therefore, this study is conducted to monitor and evaluate the air quality by updating the real-time monitored data to a central server over the Internet. The air pollutant monitoring system is developed using Arduino Uno, Wi-Fi module 8266, and a gas sensor which is MQ135, and a liquid crystal display (LCD). The block diagram of the developed system is as shown in Figure 2.1.

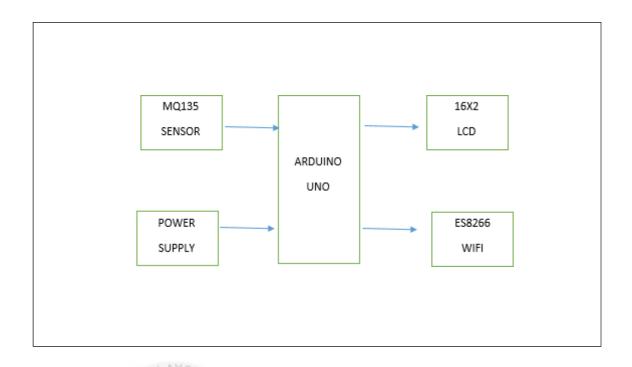


Figure 2.1: The Proposed air pollution measuring system block diagram [1]

In this work, the Arduino library was mounted, and a request was sent to the LCD. Data of the air quality are obtained through MQ135. The optimized sensor made the analog output voltage equal to the Parts per Million (PPM) concentration of the polluting gases. In this work, Microsoft Excel is used to analyze the air quality measurement that had been taken based on the Parts per Million (PPM). The monitored data are displayed on the LCD panel before being transmitted to the server through the Wi-Fi network. In the work, a web application "Thing Speak" is used to share the information with the people. The authors conclude that the proposed air pollution monitoring system using the "Thing Speak" application helps to raise the consciousness about the air quality to the people.[1]

2.1.2 Air Pollution Monitoring System based on Geosensor Network [2]

The work in [2] proposed a Geosensor-based air quality control system. The goal of the developed system is to identify the status of the air in the existing and near-future

pollutants sector. The developed system can be used for several applications such as tracking the seabird environment, microclimate chaparral transects, building comfort, and detecting instruction. The target of this project is to reduce costs and severe damage that might happen.

In this work, two systems which are air contamination tracking system and sensor network management system are used to control the geosensor network. The control system helps to adjust the sampling interval and verify the network status. The air quality control program promotes the integration of the sensor data and mitigation models for air emissions to consider the extent and region of emission.

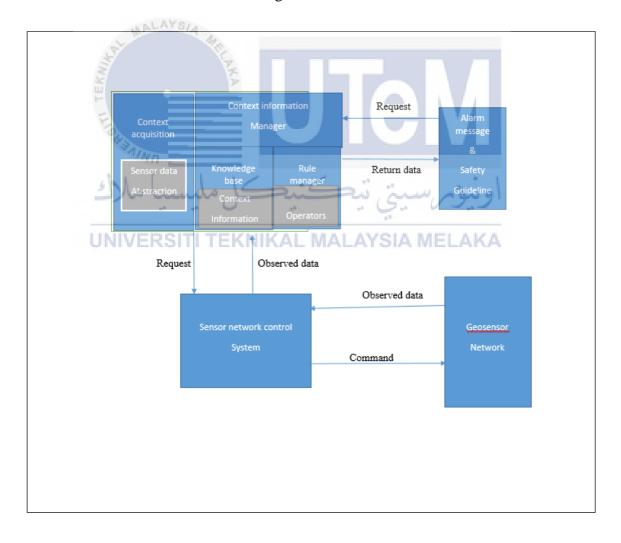


Figure 2.2: The architecture of the air pollution monitoring system [2]