

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF IOT BASED EXOSKELETON FOR MONITORING ELBOW REHABILITATION THERAPY

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automation and Robotics) With Honours.

WALAYSIA

GEEVANTHRAN A/L VEGURGAMA B071710352

960120-08-5829

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF IOT BASED EXOSKELETON FOR MONITORING ELBOW REHABILITATION THERAPY

Sesi Pengajian: 2021

Saya GEEVANTHRAN A/L VEGURGAMA mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA SULIT* RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK \mathbf{X}

TERHAD

3 LALUAN PUSING PERDANA 32,

TAMAN PUSING PERDANA 2,

31550 PUSING PERAK.

Cop Rasmi Penyelia

TS. MOHD RAZALI BIN MOHAMAD SAPIEE Pensyarah Jabatan Teknologi Kejuruteraan Elektrik Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik Universiti Teknikal Malaysia Melaka

Tarikh: 17/1/2021

Tarikh: 17/1/2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF IOT BASED EXOSKELETON FOR MONITORING ELBOW REHABILITATION THERAPY is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

ABSTRAK

Sendi siku merupakan artikulasi kompleks yang terdiri daripada sendi 'humeroulnar' dan 'humeroradial' untuk pergerakan lenturan-pemanjangan. Pergerakan siku memainkan peranan yang utama untuk melakukan aktiviti harian yang penting. Tambahan, disebabkan sistem semasa dan paradigma yang terhubung seperti 'Internet of Things' (IoT) adalah mungkin untuk mengembangkan 'elbow exoskeleten' yang lebih maju, berkesan dan perubatan berkos rendah yang boleh dimiliki oleh pesakit di rumah mereka. 1DOF memberikan julat pergerakan siku (lenturan / pemanjangan) secara naturalistik. Projek ini membentangkan 'elbow exoskeleten' yang dapat memantau pemulihan pesakit melalui alat seperti aplikasi mudah alih dan 'web server' melalui pengumpulan data kualitatif. Pergerakan ini adalah banyak digunakan dalam terapi pemulihan dan dapat dilakukan dengan efisien dengan 'exoskeleton' berdasarkan IoT yang semakin berkembang untuk memantau siku. Pesakit dapat menyimpan status pemulihan mereka melalui data dan sekiranya diperlukan di masa depan, doktor dapat merujuk pada data tersebut di mana-mana lokasi atau masa. Bagi pesakit yang tidak dapat mengangkat tangan, 'servo motor' akan membantu mereka untuk mencapai sudut yang diinginkan untuk proses pemulihan. Grafik masa nyata dari platform IoT akan menentukan proses pemulihan siku melalui analisis data. Projek ini adalah penting dalam rawatan klinikal dan kesihatan kerana ia dilakukan tanpa sokongan manusia atau ahli fisioterapi.

ABSTRACT

The elbow joint is a complex articulation composed of the humeroulnar and humeroradial joint for flexion-extension movement. To perform essential daily activities the movement of elbow plays a crucial role. In addition, due to current connected systems and paradigms such as the Internet of Things (IoT) it is possible to develop advanced, effective and low-cost medical elbow exoskeleton that patients may have in their home. This proposed 1DOF will provide naturalistic range of movements of elbow (flexion / extension). This project presents an elbow exoskeleton which can monitor patient's rehabilitation via gadgets such as mobile application and web server through qualitative data collection. These movements are widely used in rehabilitation therapy and could be performed efficiently with development of IoT based exoskeleton for monitoring elbow. Patient can save their rehabilitation status through data and the doctor can refer to the data at any location or time in case for future needed. For those who unable to lift their hand, servo motor will help them to assist to reach desired angle for rehabilitation process. The real time graph from IoT platform will determine the process of recovery of the elbow through data analysis. This project is important in clinical and health care because it is done without human support or physiotherapist.

DEDICATION

I dedicate my project to my family and friends. A special feeling of gratitude to my beloved parents who boost me throughout my struggle moment. I also dedicate this project to my lecture especially my supervisor, Mohd Razali Bin Mohamad Sapiee for being there entirely during my project and troubleshoot my doubts without any hesitation. I also take this chance to thank for giving me an opportunity to accept my attitude while writing this paper. My deepest appreciation for the people around me who I have been showing undesirable personality and willing to work with my attitude to achieve task. Once again, I am very grateful for the support and the care shown by everyone around me which motivative me for stepping to bigger stones.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

In the present world of competition there is a race of existence in which those are having will to come forward succeed. Project is like a bridge between theoretical and practical working. With this willing I joined this project. First and foremost, research and studies about this project for this past six months was interesting. During this period, I have learnt a lot about elbow exoskeleton especially method of doing of it. I perceive this opportunity of making project as big milestone in my degree life. I will strive to use gained skills and knowledge in the best possible way and I will continue work on project improvement, to attain desired career objectives.

TABLE OF CONTENTS

	PAGE
TABLE OF CONTENTS	X
LIST OF FIGURES	15
LIST OF APPENDICES	19
LIST OF SYMBOLS	Error! Bookmark not defined.
LIST OF ABBREVIATIONS	Error! Bookmark not defined.
CHAPTER 1	21
INTRODUCTION	J G V 21
1.1 OVERVIEW	21
1.1 Background of Study	21 اونيوبرسيتي تيڪ
1.2 Problem Statement TEKNIKAI	MALAYSIA MELAKA 25
1.3 Objective of the study	25
1.4 Scope of the study	26
1.5 Expected Result of the Study	26
CHAPTER 2	27
LITERATURE REVIEW	27
2.0 INTRODUCTION	27
2.1 RESEARCH BY JOURNAL	27

Х

2.1.1	New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Sha	pe
Mem	ory Alloy (SMA) Wire Actuators	27
2.1.2	NEUROexos: A Powered Elbow Exoskeleton for Physical Rehabilitation	30
2.1.3	Soft Elbow Exoskeleton for Upper Limb Assistance Incorporating Du	ıal
Moto	r- Tendon Actuator	31
2.1.4	Bimanual Elbow Exoskeleton: Force Based Protocol and Rehabilitati	on
Quan	tification	32
2.1.5	Design and Control Solutions for Haptic Elbow Exoskeleton Module Us	ed
In Sp	ace Telerobotics	33
2.1.6	A Mechanism for Elbow Exoskeleton for Customised Training	34
2.1.7	Compliant Exoskeleton	35
	2.1.7.1 Muscles Actions during a Movement	36
	ويوم سيتي بيڪٽيڪ مليسيا مارک 2.1.7.2 Muscle contraction	37
2.1.8	UNIVERSITI TEKNIKAL MALAYSIA MELAKA A Wearable 3D Printed Elbow Exoskeleton To Improve Upper Lir	nb
Reha	bilitation In Stroke Patients.	38
	2.1.8.1 Design system	39
	2.1.8.2 Hinge joint design	39
	2.1.8.3 3D Printing	39
2.1.9	A Clinically Relevant Exoskeleton Robot for Elbow Spasticity in Hemipare	tic

Stroke Patients 40

CHAPTER 3

42

METHODOLOGY

3.1	Introduction	42
3.2	Project Work Plan	42
3.3	Planning	43
3.4	Research	44
3.5	Design	45

42

3.5.1 Development of IoT based exoskeleton for monitoring elbow rehabilitation

therapy		45
3.6	Implementation	46
3.6.1	Hardware	47
	3.6.1.1 NODEMCU V3 ESP8266 ESP-12E WIFI NETWORKING WIRELE	ESS
	INTERNET DEVELOPMENT BOARD MODULE	48
	3.6.1.2 NodeMCU Base Board UNIVERSITI TEKNIKAL MALAYSIA MELAKA	49
	3.6.1.3 Potentiometer (B20K)	50
	3.6.1.4 MG996R SERVO MOTOR	51
	3.6.1.5 Servo bracket U, Mount and Horn	52
3.6.2	Software configuration	52
	3.6.2.1 Arduino IDE	52
	3.6.2.2 IoT Platforms	53
3.7	Flow Chart	55
3.7.1	Flow Chart of Project	56

3.7.2	Method of Process	57
3.8	Summary	58
CHAI	PTER 4	59
Result	and Analysis	59
4.1	Introduction	59
4.2	Project Implementation	59
4.2.1	Progress Tools	59
	4.2.1.1 Proteus	59
	4.2.1.2 Arduino IDE	60
	4.2.1.3 BLYNK	60
	4.2.1.4 ThingSpeak	61
	4.2.1.5 ThingView UNIVERSITI TEKNIKAL MALAYSIA MELAKA	62
4.2.2	Generate of Application	62
	4.2.2.1 BLYNK	62
	4.2.2.2 ThingSpeak	63
	4.2.2.3 ThingView	64
4.3	Project Work	65
4.4	Project Coding	66
4.5	Project Analysis	69
4.5.1	Flexion (ThingSpeak and ThingView)	69
	xiii	

	4.5.1.1 Straight Position (0 degree – 10 degree)	70
	4.5.1.2 Half Position (0 degree – 90 degree)	71
	4.5.1.3 Full Position (90 degree to 140 degree)	72
4.5.2	Extension (Thingspeak and ThingView)	73
	4.5.2.1 Full Position (140 degree)	74
	4.5.2.2 Half Position (140degree- 90degree)	75
	4.5.2.3 Straight Position	76
4.5.3	Rotate Servo Using BLYNK	77
4.6 CHAI	Summary BUTEN	79
UIIII	AND A AND A A A A A A A A A A A A A A A	
Concl	usion and Recommendation	80
5.1	Introduction	80
5.2	Conclusion	80
5.3	Recommendation	80
Refer	ence 82	

Appendix 84

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1. 1 Elbow M	Movement	23
Figure 2. 1 DOF of	Elbow	30
Figure 2. 2 Finding	S	30
Figure 2. 3 Finding	S AREA	31
Figure 2. 4 Finding	s	32
Figure 2. 5 Finding		33
Figure 2. 6 Finding	s	34
مالات Figure 2. 7 Finding	ىيى بېكىيەكل مېيسىيا s	اويو <i>ن</i> " 34
UNIVE Figure 2. 8 Finding		MELAKA 40
Figure 2. 9 Finding	S	41
Figure 3. 1 Project	Work Plan	43
Figure 3. 2 Gantt cl	nart	43
Figure 3. 3 Overall	Project Flowchart	44
Figure 3. 4 Illustrat	ion	45
Figure 3. 5 Block D	Diagram 15	46

Figure 3. 6 Schematic	46
Figure 3. 7 Flexion and Extension	47
Figure 3. 8 NodeMCU V3 ESP8266	48
Figure 3. 9 NodeMCU Base Board	49
Figure 3. 10 Potentiometer	50
Figure 3. 11 MG996R Servo Motor	51
Figure 3. 12 Servo bracket, Mount and Horn	52
Figure 3. 13 Arduino IDE	53
Figure 3. 14 ThingSpeak	54
Figure 3. 15 BLYNK	55
Figure 3. 16 Flow Chart of Project	56
اويوم سيتي بيڪنيڪل مليسيا ملاك	60
Figure 4. 2 ThingSpeak and Blynk Library	60
Figure 4. 3 BLYNK (Angle Moved and Rotate Servo)	61
Figure 4. 4 ThingSpeak	61
Figure 4. 5 ThingView	62
Figure 4. 6 Generate BLYNK	62
Figure 4. 7 Generate ThingSpeak	63
Figure 4. 8 Generate ThingView	64
Figure 4. 9 include 16	66

Figure 4. 10 define	66
Figure 4. 11 unsigned long and const char	67
Figure 4. 12 int and char	67
Figure 4. 13 MAP	67
Figure 4. 14 void setup	68
Figure 4. 15 Void loop	68
Figure 4. 16 Update Thingspeak	69
Figure 4. 17 Flexion at 0 degree (Thingspeak)	70
Figure 4. 18 Flexion at 0 (ThingView)	70
Figure 4. 19 Flexion at 90 degree (ThingSpeak)	71
Figure 4. 20 Flexion at 90 degree (ThingView)	71
Figure 4. 21 Flexion at 140 degree (ThingSpeak)	72
Figure 4. 22 Flexion at 140 degree (ThingView)	73
UNIVERSITI TEKNIKAL MALAYSIA MELAKA Figure 4. 23 Extension at 140 degree (ThingSpeak)	74
Figure 4. 24 Extension at 140 degree (ThingView)	74
Figure 4. 25 Extension at 90 degree (ThingSpeak)	75
Figure 4. 26 Extension at 90 degree (ThingView)	75
Figure 4. 27 Extension at 0 degree (ThingSpeak)	76
Figure 4. 28 Extension at 90 degree (ThingView)	76
Figure 4. 29 BLYNK Slider and Gauge	78
Figure 4. 30 Blynk value (ThingSpeak) ¹⁷	78



Figure 5. 2 MPU-6050 3-axis gyro

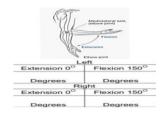
LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1.1 Making of Project	84	
Appendix 1. 2 Final Prototype	85	
Appendix 1. 3 Extension and Flexion	86	
Appendix 1. 4 Coding of the project	87	
Appendix 1. 5 Extension of the elbow in EXCEL	88	
Appendix 1. 6 Flexion of the elbow in EXCEL	89	
Appendix 1. 7 Logbook Week 1 and 2 Appendix 1. 8 Logbook week 3 and 4	90 91	
Appendix 1. 9 Logbook Week 5 and 6 Appendix 1. 10 Logbook week 7 and 9	92 93	
UNIVERSITI TEKNIKAL MALAYSIA M Appendix 1. 11 Logbook week 10 and 11	ELAKA 94	
Appendix 1. 12 Logbook week 12	95	
Appendix 1. 13 Work Progress Week 1 and 2	96	
Appendix 1. 14 Work Progress Week 2 and 4	96	
Appendix 1. 15 Work Progress Week 5 and 6	97	
Appendix 1. 16 Work Progress Week 7 and 8	97	
Appendix 1. 17 Work Progress week 9 and 10	98	

Appendix 1. 18 Work Progress week 11	98
Appendix 1. 19 Work Progress week 12	99

CHAPTER 1

INTRODUCTION


1.1 OVERVIEW

This section will explain the purpose and goals of the project that has been implemented. Also, this chapter will explain certain elements that are important to the user, which is the background of study, problem statement, objectives, scope of work as well as the expected result of this study.

1.1 Background of Study

According to the Michigan Medicine University, everyone has had a minor elbow injury in their lifetime, which varies according to the type of accidents that cause for the injury. Elbow joint is made up of bone, cartilage, ligaments, and fluid in which works with the help of muscles and tendons which aids the joints to move swiftly. When any of these structures is hurt or diseased, it is known as elbow injury. These injuries might include symptoms such as numbness, swelling, tingling, pain weakness, or decreased range of movement. Based on the research been conducted by the university, there are few highly risked reasons been identified as the cause of elbow injuries which are been enlisted as firstly, sports or recreational activities. Secondly, tasks related to work, thirdly, work or projects around the home and lastly, falls. The statistics of elbow recoveries also varies based on the depth of the injury been caused and experts had reviewed that factors such as age, sex, medication, health quality and etc could be the driving factors on the recovery duration.

There are few mechanisms of injury in elbow fractures and dislocation been listed by the researchers, as for example, first and foremost is tendonitis which is caused by continuity of vigorous activities that will cause inflammation, pain and difficulty using the elbow joint. Secondly is an injury known as tendinosis, which occurs because of aging that causes the tear of tendons. Besides that, another type of elbow injury is tennis elbow in which the outer elbow tendon is prone to injury meanwhile golfers' elbow injury condition occurs when there is an injury to the inner elbow tendon. Apart from the mentioned injuries types, there are abundance of other injuries as well been linked to elbow fractures. Hence, an effective and proactive treatment should be developed and used to treat these injuries. The range of motion consists of two which is extension and flexion that take place within the sagittal plane. Elbow extension is simply conducting the forearm backwards to anatomical position. This action is carrying out by triceps brachii with an unimportant assistance from anconeus. Triceps arise with two heads dorsal on the humerus and with its long head on the scapula just under the shoulder point. Elbow flexion is when your forearm moves in the direction of your body by flex at your elbow. The three bones complicated in the flexion of elbow are the humerus, ulna, radius. There are three muscles complicated in your flexing your elbow. They attach your upper arm to your forearm. When they compact, they become tiny and pull your forearm in the direction of the upper arm.

Figure 1. 1 Elbow Movement

One of the well-defined treatments for elbow treatments is known as Exoskeleton, which uses the rapidly growing military and rehabilitation exoskeleton technology in industrial settings. In this globalization era, robotic exoskeletons have emerged as rehabilitation tool that may ameliorate quite several health-related consequences after the joint been damaged. The usage of exoskeletons may provide individuals with these elbow injuries or fracture with the opportunity to improve their level of physical activity in an independent manner which indirectly will be helpful in elevating their psychological well-being by improving quality of life and decreasing anxiety and depressive symptoms.

Exoskeleton technology is known as elbow exoskeleton, a design of an intelligent mechanism that can give higher torque to weight ratio compared to existing models. This widespread technology is used to help individuals for external support of their movement, precisely on elbow injuries or fracture treatment the usage of the elbow exoskeleton model can assist the patients to self-support themselves with greater stability as well. This framework works under Internet of Things (IoT) system to record movement

This technique vastly differs from the traditional method of rehabilitation process where the attention and care of physiotherapy to heal the injury by monitoring and provide help by assist them physically. The experts work to monitor the corresponding therapy performance which is a hassle with the high numbers of patients. Hence the developed system allows a quantitative measure of the evolution and capabilities of the patient over the usage of IoT that has historical data on progress individually and in detail of the entire recovery. This is because the data recorded by the sensors are used for characterization of movement thus always allowing for monitoring and estimation of patients' state which also analytically measure the patient's healing, as well as the generation of new exercises adapted to that evolution. This system works with three main parts known as data acquisition unit, data processing unit and cloud- based service for remote access to data which will then demonstrate the result of monitoring the

elbow rehabilitation process.

اويوم سيبي يمصيب معرف سيسيب مارك UNIVERSITI TEKNIKAL MALAYSIA MELAKA