AQUAPONIC AND VERTICAL PLANT MONITORING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

AQUAPONIC AND VERTICAL PLANT MONITORING

B071710231

950716-01-6550

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: AQUAPONIC AND VERTICAL PLANT MONITORING

Sesi Pengajian: 2021

WALAYS/4

Saya NURLIYANA ATHIRAH BINTI SAID mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT* Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD* Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

X	TIDAK

TERHAD

Yang benar,	Disahkan oleh penyelia:
MALATSIA	
NURLIYANA ATHIRAH BINTI SAID	TS. TENGKU MOHD FAISAL BIN
E al anti-	TENGKU WOOK
Alamat Tetap:	Cop Rasmi Penyelia
No. 36 Lot T06, Lorong Sierra 7/1b	Te. TG MOHD FAISAL BIN TENGKU WOOK Jurufera Pengajar Kanan
Bandar Sierra, Km 20 Jalan Tuaran, KAL	Jacatan leknologi Kejunderaan Elektronik dan Kompuler Fakuti Teknologi Kejunderaan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka
88450 Kota Kinabalu, Sabah.	

Tarikh: 18 February 2021

Tarikh: 18 February 2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled AQUAPONIC AND VERTICAL PLANT MONITORING is the results of my own research except as cited in references.

Signature: 1 NURLIYANA ATHIRAH BINTI SAID Author : 18 February 2021 Date: **UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Industrial Electronic) with Honours. The member of the supervisory is as follow:

Signature:
Supervisor: TS. TENGKU MOHD FAISAL BIN
اونيون شيبي يت TENGKU wook يكل مليسيا ملاك
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
Signature:
Co-supervisor: TS. NADZRIE BIN MOHAMOOD

ABSTRAK

Tajuk projek ini adalah Pemantauan Akuaponik dan Tanaman Menegak. Objektifnya adalah untuk mengembangkan akuaponik automatik dan pemantauan ikan menggunakan Arduino NANO, untuk mengembangkan akuaponik automatik dan pemantauan tangki ikan menggunakan Arduino NANO. Seterusnya, untuk mengembangkan aplikasi IoT yang memantau sistem akuaponik. Akhirnya, untuk menyediakan kelestarian lingkungan dengan penggunaan air yang rendah dan

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

penggunaan tenaga yang rendah.

ABSTRACT

The title of this project is Aquaponic and Vertical Plant Monitoring. The objective is to develop automated aquaponics and fish monitoring using Arduino NANO. Next, to develop an IoT application that monitors aquaponics system. Lastly, to provide sustainability environmental with low water usage and low power usage.

DEDICATION

First and foremost, I would like to dedicate this project report to my supervisor Ts. Tengku Mohd Faisal Bin Tengku Wook, my co-supervisor Ts. Nadzrie Bin Mohamood, family and friends for their guidance, effort and moral in every aspect, as well as support during the project period of time, in which inspiring to accomplish in finishing this report. Best regards to my beloved parents, thank you for giving all the encouragement and support in finishing this report.

ACKNOWLEDGEMENT

I would like to express grateful to Allah S.W.T for letting me accomplish this project. Best sincere thanks to Ts. Tengku Mohd Faisal Bin Tengku Wook, my supervisor and Ts. Nadzrie Bin Mohamood, my co-supervisor who always contributed a great amount of time and effort for their guidance, valuable opinions, support and encouragement. I take this opportunity to record my sincere thanks to all the faculty members for their help and effort. None the less, I also want to thank my parents for their unceasing encouragement and support.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

	ABSTRAK	PAGE vi
	ABSTRACT	vii
	DEDICATION	viii
	ACKNOWLEDGEMENT	ix
	TABLE OF CONTENTS	х
	LIST OF TABLES	xiv
	LIST OF FIGURES	XV
	LIST OF APPENDICES	xviii
	اونوم سنخ تنڪنڪ ملکو LIST OF SYMBOLS	xix
	LIST OF ABBREVIATIONS UNIVERSITI TEKNIKAL MALAYSIA MELAKA	XX
CHAF	PTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Statement of the Purpose	2
1.3	Problem Statement	2
1.4	Objective	3
1.5	Scope	4

CHAI	PTER 2 LITERATURE REVIEW	5
2.1	Previous Monitor System in Traditional Method	5
2.2	Microcontroller	7
	2.2.1 Comparison of Microcontrollers	7
2.3	Aquaponics Essential Bio Component	13
2.4	Monitoring System	15
2.5	Aquaponics Monitoring System	17
	2.5.1 Water Parameter Detection	18
	2.5.2 Internet of Things (IoT) Remote Access	19
2.6	Automated Feeder Fish	20
2.7	Blynk	21
	اونىۋەرىسىتى تىكنىكا ملىسىا ملاك	
CHAI	PTER 3 METHODOLOGY	22
2.1	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	22
5.1	Floject Flowchaft	
3.2	Project Block Diagram	23
3.3	Arduino IDE	24
3.4	Eagle Software	25
3.5	Hardware Component	25
3.6	Project Cost	29
3.7	Expected Result	30

CHA	PTER 4	PRELIMINARY RESULT	31
4.1	Schematic Diagram		31
	4.1.1	Power Supply Circuit Diagram	31
	4.1.2	Hardware Circuit Diagram	32
	4.1.3	Pin Circuit Diagram	34
	4.1.4	Component of PCB Layout	35
	4.1.5	Eagle PCB Schematic	36
	4.1.6	Hardware Component Setup	36
4.2	Aquapo	onic and Vertical Plant Monitoring Setup	38
	4.2.1	Aquarium	40
	4.2.2	Vertical Plant	41
4.3	Blynk	اونيومرسيتي تيڪنيڪل مليهApplication	42
4.4	Project	Coding ITI TEKNIKAL MALAYSIA MELAKA	44
	4.4.1	LDR Sensor Code	47
	4.4.2	Moisture Sensor Code	47
	4.4.3	Ph Sensor Code	48
4.5	Project	Analysis	48
	4.5.1	Analysis of pH Sensor	48
	4.5.2	Analysis of Moisture Sensor	50
	4.5.3	Analysis of Temperature and Humidity Sensor	51

4.6	Discussion	53
CHAP	TER 5 CONCLUSION	55
5.1	Conclusion	55
5.2	Future Work	56

57

59

REFERENCES

APPENDIX

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2. 1: Comp	arison of Microcontroller	8
Table 3. 1: Comp	onent of Hardware Project	25
Table 3. 2: Cost c	f project	29
	ALAYSIA	
Table 4. 1: Pin Ci	rcuit Diagram	34
Table 4. 2: pH Re	ading	49
Table 4. 3: Moist	are Reading	50
Table 4. 4: Tempo	erature and Humidity Reading	52
UNIV	ERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2. 1: Monito	or System in Traditional Method	5
Figure 2. 2: Arduin	10	12
Figure 2. 3: Arduin	no specifications	12
Figure 2. 4: Aquap	onics system	13
Figure 2. 5: Biolog	ical components in aquaponics process	14
Figure 2. 6: Genera	al water quality tolerances for fish, plant and bacteria	15
Figure 2. 7: Aqua I	Droid-Automated Aquaponics development	17
Figure 2. 8: Glass e	electrode pH sensor	18
Figure 2. 9: DS18E	اونيوس سيني نيڪ Temperature sensor	19
Figure 2. 10: DFRO	Obot Soil moisture sensor MALAYSIA MELAKA	19
Figure 2. 11: Autor	mated Aquaponics with IoT	20
Figure 2. 12: Blynl	application	21
Figure 3. 1:Flowch	art of Aquaponics and Vertical Plant Monitoring	22
Figure 3. 2: Aquap	onics and Monitoring Fish Tank Block Diagram	23
Figure 3. 3: Arduin	no IDE	24
Figure 3. 4: Autode	esk Eagle	25

Figure 3. 5: Arduino NANO	25
Figure 3. 6: ESP-01S ESP8266	26
Figure 3. 7: pH sensor	26
Figure 3. 8: DHT 11 Humidity Sensor	26
Figure 3. 9: LDR Light Sensor	26
Figure 3. 10: Grow light	26
Figure 3. 11: Servo motor	27
Figure 3. 12: Water Pump	27
Figure 3. 13: LED	27
Figure 3. 14: Schottky Diode	27
Figure 3. 15: Resistor	27
Figure 3. 16: IC Regulator	28
Figure 3. 17: Capacitor	28
UNIVERSITI TEKNIKAL MALAYSIA MELAKA Figure 3. 18: Relay	28
Figure 3. 19: Moisture Sensor	28
Figure 3. 20: DHT 11 Sensor	28
Figure 4. 1: Power Supply Circuit Diagram	31
Figure 4. 2: Arduino Uno Circuit Diagram	32
Figure 4. 3: Sensor and Relay Circuit Diagram	33
Figure 4. 4: Wi-Fi ESP8266 Circuit Diagram	33
xvi	

Figure 4. 5: PCB Layout	35
Figure 4. 6: Eagle PCB Schematic	36
Figure 4. 7: Hardware Component Setup	37
Figure 4. 8: Top View Panel Box	37
Figure 4. 9: Side View Panel Box	38
Figure 4. 10: Aquaponic and Vertical Plant Monitoring Setup	39
Figure 4. 11: Back View	40
Figure 4. 12: pH Probe and Water Pump	41
Figure 4. 13: Vertical Plant	42
Figure 4. 14: Blynk App	43
Figure 4. 15: Create Project	44
Figure 4. 16: Arduino IDE Preference	45
Figure 4. 17: Connects Wi-Fi Manually	46
UNIVERSITI TEKNIKAL MALAYSIA MELAKA Figure 4. 18: Platform Coding Development	46
Figure 4. 19: LDR Sensor Code	47
Figure 4. 20: Moisture Sensor Code	47
Figure 4. 21: Ph Sensor Code	48
Figure 4. 22: Chart of pH Reading	50
Figure 4. 23: Chart of Moisture Reading	51
Figure 4. 24: Chart of Temperature and Humidity Reading	53

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1: Coding Aquap	oonic and Vertical Plant Monitoring	59
Appendix 2: Gantt Chart		66

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

- **IOT** Internet of Things
- **pH** Potential for Hydrogen
- LCD Liquid-crystal display
- TDS Total Dissolved Solids
- SAL Salinity
- EC Electrical Conductivity

CHAPTER 1

INTRODUCTION

This chapter is about project background, statement of the purpose, and problem statement. Project background section covers about how project is initiated, problem statement section describes the problems that the people or technologies are facing nowadays and statement of purpose explains the stating the purposes of project. Therefore, the structure of the whole project can be precisely visualized.

1.1 Background

The combination of aquaculture and hydroponics is called as Aquaponics. For aquaponics, fish and plants placed together in an integrated, soilless environment. Fish waste is a food supply for the plants, and the plants have a natural filter for the water in which the fish live. When aquaponics is combined with a managed greenhouse environment, quality crops can be grown for a few months anywhere in our world.

A vertical farming is the method of raising crops in vertical layers. This often includes controlled-environmental cultivation, which seeks to increase plant productivity, and soilless farming strategies such as aquaponics. Plants are developed at various rates, such that the water moves down from the top to the bottom and back to the fish tank. The aquaponics system can grow around twice as many plants as it can with the traditional agricultural land system of the same region and the system used the waste of fish to act as a crop fertilizer.

The combination of aquaculture and hydroponics, and with this system rids the negative aspects of each with a natural chain in between of fish and plants. Aquaponics requires highly nutritious fish effluent, which contains almost all the nutrients required for optimum production rather than by adding chemical solution to grow plants. Rather than waste water discharge, aquaponics uses the plants and the environment under which they thrive to disinfect and purify the water, which is then returned to the fish tank. The water will be recycled continuously and only has to be replaced if it is wasted by transpiration and evaporation.

1.2 Statement of the Purpose

The purpose of the project is to develop automated aquaponics and fish monitoring using Arduino NANO, to monitor aquaponics performance versus manual method and to provide sustainability environmental with low power usage and low water usage.

1.3 Problem Statement

In a combination of aquaculture and hydroponics process, there are challenges that user had to deal with. Most of the problems come from time management and man power. The user had to monitor near to the plant and fish repeatedly in daily life, due to the user had to go work in working hours or short-term away, the plant and fish couldn't be taken care as the user had to check the fish and plant condition such as pH value of water, water temperature, water level, and feed the fish. Furthermore, this process takes more time for user to be alert in manage fish feeding time because feeding too often or too much may lead to several problem. The excessive digestive waster and uneaten food can lead to water pollution, where it creates a high ammonia, nitrate levels, makes a lower oxygen level and as well as low pH levels. Other than that, excessive food floating in the water can clog the filters, therefore it produces toxic into the water.

However, this problem can be solved to execute faster responds. Instead of using monitor in a small range, Internet of Things (IoT) an internet application is a perfect monitoring system to monitor the aquaponics. It is much easier and save time as it is automated by using sensors. This process will be taken more easily and save time for user by taking care of aquaponics condition at anywhere and anytime.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Sic

1.4 Objective

Below are the objectives of this project:

- (a) To develop automated aquaponics and vertical plant monitoring using Arduino NANO
- (b) To develop an IOT application that monitors aquaponics system
- (c) To provide sustainability environmental with low water usage