# IOT BASED FULLY AUTOMATED SMART PARKING SYSTEM



# UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2020



# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# IOT BASED FULLY AUTOMATED SMART PARKING SYSTEM



CHAI GAO FU B071710686 971217045333

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2020



### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: IoT based fully automated smart parking system

WALAYS/4

Sesi Pengajian: 2020

Saya CHAI GAO FU mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.

- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan (X)

|               |                            | Mengandungi maklumat yang berdarjah keselamatan atau                                                                                                                                                                               |
|---------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                            | kepentingan Malaysia sebagaimana yang termaktub dalam AKTA                                                                                                                                                                         |
|               | SULII*                     | RAHSIA RASMI 1972.                                                                                                                                                                                                                 |
|               | TERHAD*                    | Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.                                                                                                                           |
| $\bowtie$     | TIDAK                      |                                                                                                                                                                                                                                    |
|               | TERHAD                     |                                                                                                                                                                                                                                    |
| Yang          | benar,                     | Disahkan oleh penyelia:                                                                                                                                                                                                            |
|               | Chest.                     | AHMAD NIZAM BIN MOHD JAHARI                                                                                                                                                                                                        |
| CHAI<br>Alama | GAO FU<br>at Tetap: 23 Jal | @ MOHD JOHARI                                                                                                                                                                                                                      |
| Labis         | Johor                      | SITI TEKNIKAL NCop Rasmi Penyelia AKA                                                                                                                                                                                              |
| Tarikł        | n: 14-2-2021               | Ts. AHMAD NIZAM BIN MOHD JAHARI @ MOHD JOHARI<br>Penyelaras Program<br>Jabatan Teknologi Elektrik & Elektronik<br>Fakukti Teknologi Kejuruteraan Elektrik & Elektronik<br>Tarikh: 14-2-2021<br>Universiti Teknikal Malaysia Melaka |
|               |                            | •                                                                                                                                                                                                                                  |

\*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

### DECLARATION

I hereby, declared this report entitled IoT based fully automated smart parking system is the results of my own research except as cited in references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.



### APPROVAL

This report is submitted to the Faculty of Electric and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor Electronics Engineering Technology (Industrial Electronics) with Honours. The member of the supervisory is as follow:



#### ABSTRAK

Dalam beberapa tahun kebelakangan ini, terdapat banyak orang yang menghadapi masalah mencari tempat letak kenderaan. Masalah ini telah menjadi masalah besar dengan peningkatan jumlah kenderaan. Penumpuan kedai dan restoran di bandar juga menjadi faktor kekurangan tempat letak kenderaan dan kesesakan lalu lintas. Dalam projek ini, sebuah system dicadangkan dengan tajuk tempat letak kenderaan pintar secara automatik berasaskan Internet Pelbagai Benda(IPB). IPB merujuk kepada mana-mana peranti yang digunakan untuk membina peranti digital atau bertukar data antara internet dengan peranti. Objektif sistem ini adalah untuk membantu menentukan slot tempat letak kenderaan dan membantu pengguna mendapatkan slot tempat letak kenderaan dengan mudah. Slot tempat letak kereta dapat dikesan dengan menggunakan Arduino Infrared Sensor yang menghubungkan ke modul transceiver NodeMCU dan diprogramkan melalui mikrokontroler Arduino Mega 2560. Aplikasi mudah alih dibuat menggunakan laman web sumber terbuka bernama MIT app inventor. Pengguna boleh memeriksa slot tempat letak kereta dengan aplikasi sebelum mereka pergi ke destinasi. Pengguna juga boleh menempah slot tempat letak kereta dan sistem akan mengemas kini maklumat secara automatik. Oleh itu, sistem ini direka untuk membantu pengguna menjimatkan masa dan bahan keluar kenderaan.

#### ABSTRACT

There are a lot of people facing a question of vehicle parking in recent years. This problem had become a major problem, as the number of vehicles continuously increased. A factor in the lack of parking slots and traffic jams is also the concentration of shops and restaurants in towns. A fully automated, smart parking system based on Internet of Things (IoT) is proposed in this paper. IoT refers to any system used to create digital devices or to share data between the computer and the internet. This system 's objective helped determine the free parking slot, and helped users easily get a parking slot. The parking slot can be detected through the use of Arduino Infrared Sensor, which connects to the NodeMCU transceiver module and is programmed via the Arduino Mega 2560 microcontroller. An open source website called the developer of the MIT app is used to build a smartphone application. With the application, users can check the parking slot before they went to the destination. Users can also book a parking slot and the system will automatically update the information. Thus, this system is designed to help users save their time and fuels consumption.

### **DEDICATION**

This research is dedicated to my parents who give me moral support and motivation when this study is being done. I would also like to dedicate my friends and boss to help me with this project as I face trouble.



#### ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to all the outstanding people who have provided my successful project with continuous support, guidance, experience, understanding and commitment. I would also like to express my sincere thanks to my supervisor, Ahmad Nizam Bin Mohd Jahari @Mohd Johari for his support, suggestions and encouragement and for helping me in completing this project's implementation and documentation. I want to thank every lecturer who taught me, particularly those who gave me all the knowledge, skills and tips for my research. To complete this project, those experience, skills and tips are very important to me. I would also like, in particular, to thank all my friends from BEEA, BEET and BEEC for providing me with transportation and making suggestions and improvements on my project. I very much appreciate their encouragement and their support. It is blessings and gracious encouragement from my parents, respected elders and my supportive colleagues that allow me to make this project a reality.

# TABLE OF CONTENTS

|                                                          | PAGE  |
|----------------------------------------------------------|-------|
| DECLARATION                                              |       |
| APPROVAL                                                 |       |
| ABSTRAK                                                  | iii   |
| ABSTRACT                                                 | iv    |
| DEDICATION                                               | v     |
| ACKNOWLEDGEMENTS                                         | vi    |
| TABLE OF CONTENTS                                        | vii   |
| LIST OF TABLES                                           | xiv   |
| LIST OF FIGURES                                          | XV    |
| اونيوس سيتي تيڪنيڪل مل <mark>est of Appendices ما</mark> | xviii |
| LIST OF SYMBOLS ITI TEKNIKAL MALAYSIA MELAKA             | xix   |
| LIST OF ABBREVIATIONS                                    | XX    |

| СНА | APTER 1 INTRODUCTION | 1 |
|-----|----------------------|---|
| 1.1 | Introduction         | 1 |
| 1.2 | Problem Statement    | 3 |
| 1.3 | Objective            | 4 |

| 1.4  | Project Scope                                      | 4  |
|------|----------------------------------------------------|----|
| 1.5  | Expected Result                                    | 5  |
| 1.6  | Summary                                            | 5  |
|      |                                                    |    |
| СНА  | PTER 2 LITERATURE REVIEW                           | 7  |
| 2.1  | Introduction                                       | 6  |
| 2.2  | IoT based Smart Parking System                     | 6  |
| 2.3  | IoT based Car Parking System                       | 9  |
| 2.4  | Smart Parking System                               | 11 |
| 2.5  | IoT based Smart Parking System with NodeMCU        | 13 |
| 2.6  | Smart Parking System using IoT                     | 14 |
| 2.7  | Reservation-based Smart Parking System             | 16 |
| 2.8  | Parking Management System Using Mobile Application | 17 |
| 2.9  | Smart Transportation System Using IoT              | 19 |
| 2.10 | Reservation-based Smart Parking System             | 21 |
| 2.11 | An IoT based Smart Parking System Using LoRa       | 22 |

| CHAF | TER 3 METHODOLOGY                                        | 24 |
|------|----------------------------------------------------------|----|
| 3.1  | Introduction                                             | 24 |
| 3.2  | Project Workflow                                         | 24 |
| 3.3  | Flowchart                                                | 26 |
| 3.4  | Block Diagram                                            | 27 |
| 3.5  | Hardware                                                 | 28 |
|      | 3.5.1 Arduino Mega 2560                                  | 29 |
|      | 3.5.2 NodeMCU                                            | 30 |
|      | 3.5.3 IR Sensor                                          | 31 |
|      | 3.5.4 LED                                                | 32 |
|      | اونيوبرسيتي تيڪنيڪل LCD Display                          | 33 |
|      | 3.5.6 Servo Motor<br>UNIVERSITI TEKNIKAL MALAYSIA MELAKA | 34 |
| 3.6  | Software                                                 | 35 |
|      | 3.6.1 Mobile Application                                 | 35 |
|      | 3.6.2 Cloud                                              | 36 |
| 3.7  | Software Design                                          | 36 |
|      |                                                          |    |
| CHAF | <b>YTER 4RESULT AND ANALYSIS</b>                         | 37 |
| 4.1  | Introduction                                             | 37 |
| 4.2  | The Developed Smart Parking System xiii                  | 37 |

| 4.3 | Result Analysis                         | 42 |
|-----|-----------------------------------------|----|
|     | 4.3.1 Internet Speed                    | 42 |
|     | 4.3.2 Accuracy of IR Sensor             | 45 |
| 4.4 | Display of Result                       | 48 |
|     | 4.4.1 The initial Parking Slot Status   | 48 |
|     | 4.4.2 The Real-Time Parking Slot Status | 50 |
| 4.5 | Summary                                 | 53 |

| CHAPTER 5 CONCLUSION AND RECOMMENDATION | 54 |
|-----------------------------------------|----|
| 5.1 Introduction                        | 54 |
| 5.2 Conclusion                          | 54 |
| 5.3 Recommendation and Future Work      | 55 |
| اونيوبرسيتي تيڪنيڪhobile Application    | 55 |
| 5.3.2 Mobile Application                | 55 |
| 5.3.3 Sensor                            | 56 |
| 5.4 Project Potential                   | 56 |
| REFERENCE                               | 57 |
| APPENDIX                                | 59 |

### LIST OF TABLES

| TABLE         | TITLE PAGE                                                             |        |
|---------------|------------------------------------------------------------------------|--------|
|               |                                                                        |        |
| Table 3.1:    | Function and application for hardware.                                 | 48     |
| Table 3.2:    | Arduino Mega 2560 details                                              | 30     |
| Table 4.1:    | Average Time response when 1 parking slot occupied                     | 44     |
| Table 4.2:    | Average Time response when 2 parking slot occupied                     | 44     |
| Table 4.3:    | Average Time response when 3 parking slot occupied                     | 44     |
| Table 4.4:    | The status of the parking slots in project and mobile application      | 48     |
| Table 4.5: Th | e real-time status of the parking slots in project and mobile applicat | ion 50 |
| UN            | IVERSITI TEKNIKAL MALAYSIA MELAKA                                      |        |

## LIST OF FIGURES

### TITLE

### PAGE

| Figure 2.1:         | The system created in (Khanna & Anand, 2016)                                                    | 7  |
|---------------------|-------------------------------------------------------------------------------------------------|----|
| Figure 2.2:         | Flow Chart of the System designed in(Khanna & Anand, 2016)                                      | 8  |
| Figure 2.3:         | System Architecture designed in (Chouhan and Sandhya, 2017)                                     | 9  |
| Figure 2.4:         | Flow chart of System modules in (Chouhan and Sandhya, 2017)                                     | 10 |
| Figure 2.5:         | Website design in (Devineni et al., 2019)                                                       | 11 |
| Figure 2.6:         | Block Diagram of the system in (Devineni et al., 2019)                                          | 12 |
| Figure 2.7:         | Architecture of the system in (Anjari & Budi, 2018)                                             | 13 |
| Figure 2.8:         | Smart parking system proposed in (Krishna and Narendhar, 2019)                                  | 15 |
| UNIV<br>Figure 2.9: | ERSITITEKNIKAL MALAYSIA MELAKA<br>Architecture of smart parking system proposed in(Wang and He, |    |
|                     | 2011)                                                                                           | 16 |
| Figure 2.10:        | System Design in (Owayjan et al., 2017)                                                         | 18 |
| Figure 2.11:        | User initials and the parking lot in (Owayjan et al., 2017)                                     | 19 |
| Figure 2.12:        | Block diagram of the system in (Saarika et al., 2017)                                           | 20 |
| Figure 2.13:        | Cloud system in (Saarika et al., 2017)                                                          | 21 |
| Figure 2.14:        | Parking status of the system in (Rajbhandari et al., 2018)                                      | 22 |

| Figure 2.15:       | Block diagram of the system in (Kodali, 2018)                    | 23 |
|--------------------|------------------------------------------------------------------|----|
| Figure 3.1:        | General flow chart of the project                                | 24 |
| Figure 3.2:        | Flow chart of the smart parking system                           | 26 |
| Figure 3.3:        | Block Diagram of the system                                      | 27 |
| Figure 3.4:        | Block Diagram for transceiver model                              | 28 |
| Figure 3.5:        | Arduino Mega 2560 pinout                                         | 29 |
| Figure 3.6:        | NodeMCU pinout                                                   | 31 |
| Figure 3.7:        | IR Sensor                                                        | 32 |
| Figure 3.8:        | LED 40                                                           | 32 |
| Figure 3.9:        | LCD Display                                                      | 33 |
| Figure 3.10:       | Servo Motor                                                      | 35 |
| Figure 3.11:       | Block Diagram of Firebase                                        | 35 |
| Figure 3.12:       | Software design of the project                                   | 36 |
| UNI<br>Figure 4.1: | VERSITI TEKNIKAL MALAYSIA MELAKA<br>The prototype of the project | 38 |
| Figure 4.2:        | The login page of the mobile application                         | 39 |
| Figure 4.3:        | The sign-up page of the mobile application                       | 39 |
| Figure 4.4:        | The main menu of the mobile application                          | 40 |
| Figure 4.5:        | The real-time display of mobile application                      | 40 |
| Figure 4.6:        | The real-time database of the project                            | 41 |
| Figure 4.7:        | The speed test results.                                          | 42 |

42

| Figure 4.9:  | Time response when 2 parking slots occupied immediately                                        | 43 |
|--------------|------------------------------------------------------------------------------------------------|----|
| Figure 4.10: | Time response when 3 parking slots occupied immediately                                        | 43 |
| Figure 4.11: | Sensor detected at slot A1                                                                     | 45 |
| Figure 4.12: | Sensor detected at slot A2                                                                     | 46 |
| Figure 4.13: | Sensor detected at slot A3                                                                     | 46 |
| Figure 4.14: | Accuracy of 3 IR sensors.                                                                      | 47 |
| Figure 4.15: | The status of cloud database.                                                                  | 48 |
| Figure 4.16: | Notification when the parking slot is successfully booked                                      | 50 |
| Figure 4.17: | Real-time database status                                                                      | 51 |
| Figure 4.18: | Real-time LCD display status<br>اونيونر سيتي تيڪنيڪل مليسيا<br>ERSITI TEKNIKAL MALAYSIA MELAKA | 51 |



## LIST OF APPENDICES

| APPENDIX   | TITLE                      | PAGE |
|------------|----------------------------|------|
|            |                            |      |
| Appendix 1 | Gantt Chart of the project | 59   |
| Appendix 2 | Coding for Arduino         | 60   |
| Appendix 3 | Coding for NodeMCU         | 64   |



## LIST OF SYMBOLS

MbpsMegabits per secondmAMile AmpereVVoltage



### LIST OF ABBREVIATIONS

PCA Principal Component Analysis LED Light-emitting diode **PWM** Pulse with Modulation LCD Liquid Crystal Display IR Infrared LCD Liquid Crystal Display API APPlication Programming Interface WiFi Wireless Fidelity **USB** Universal Serial Bus Long Range LoRa Serial Peripheral Interface SPI **ICSP** In Circuit Serial Programming EKNIKAL MALAYSIA MELAKA UNIVERS **International Business Machines** IBM Radio-frequency identification RFID ATM Automated Teller Machine

#### **CHAPTER 1**

### **INTRODUCTION**

#### 1.1 Introduction

The Internet of Things (IoT) had become a crucial part of our lives. Internet of things helps people improve their living style as they can control their lives. For example, with the implemention of smart devices, it able to automate parking or house. This show that IoT became essential to our life. The two important words in IoT are "internet" and "things". The internet is an electronic communications network that connected computers network and let peopleshare and receive information around the world. Dictionary meaning of the word "things" is an object that eminent from a living being. The combination of the Internet of Things means that a system interlinks devices, mechanical and digital machines to transmit data over the network without requiring human-to-human transmission. General, IoT began with the best tools for communication. The devices can be monitored, operated by mobile phones or computers that connect through the Internet. Cloud serves as a great IoT partner as a forum for all sensors and it can store and access data.

Arduino is an open-source electronics based on accessible hardware and software. The Arduino project started in 2005 for students in Italy. This project is launched to provide a low cost and a better way to create devices that can use sensors and actuators to communicate with their environments. Arduino board is able to read inputs such as pulse on a push-button or digital input from the sensor and turn it into an output. With the development of Arduino, it has been used in a lot of different projects and applications. The Arduino software is reasonably flexible for advanced users. This is because it can run on Mac, Windows and also Linux. Arduino widely used in the education region because it is simple, clear programming environment, inexpensive and it also open-source software.

Internet of Things is the main ideal to create a Smart City. Smart cities in all countries are undergoing a huge increase in the number of cars used for transportation. One of the main problems that smart cities faced is lack of car parking and traffic management system. Finding an available parking spot is always a big problem for the driver especially in the city area. It commonly caused more traffic jams and also air pollution as the driver take more time to find a parking slot. Indirectly, it may also cause global warming. Sometimes the driver may go to higher floors when the lower floor is full but there I no guarantee that the driver will get a parking spot there. Cycling around to find a free parking slot not only will make the driver anger and air pollution it also has a risk of occuring accidents in the parking slot is paid according to the time when you enter the parking slot. The longer the time the higher the parking fees. These problems can be solved if drivers can be informed that their desired destination has parking slot available.

With the development of technology, smartphones have become a necessity for every people on this world. A smart parking system with IoT based system helps to monitor vehicle parking. IoT based smart parking able to help users to find a parking slot through internet. This is because IoT objects are can be exchange information through