DEVELOPMENT OF IOT BASED MONITORING AND CONTROL SYSTEM IN INDUSTRIAL MACHINE

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF IOT BASED MONITORING AND CONTROL SYSTEM IN INDUSTRIAL MACHINE

B071710388 960305-11-5801

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF IOT BASED MONITORING AND CONTROL

SYSTEM IN INDUSTRIAL MACHINE

Sesi Pengajian: 2020

Saya **Wan Hilmi Mujahid Bin W. Ismail Sahaimi** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK TERHAD

Yang benar,

Alamat Tetap:

SULIT*

TERHAD*

20

Disahkan oleh penyelia:

Ts Ahmad Nizam Bin Mohd Jahari @

Ts. AHMAD NIZAM BIN MOHD JAHARI@ MOHD JOHARI

Wan Hilmi Mujahid Bin W. Ismail Sahaimi

Lot 390 Kampung Rhu Sepuluh, 21010

Cop Rasmi Penyelia

Mohd Johari

Setiu , Terengganu. Jabatan Teknologi Elektrik & Elektronik Fakulti Teknologi Kejuruteraan Elektrik & Elektfonik Universiti Teknikal Malaysia Melaka

Tarikh: 17/2/2021

Tarikh: 17 / 02 / 2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF IOT BASED MONITORING AND CONTROL SYSTEM IN INDUSTRIAL MACHINE is the results of my own research except as cited in references.

Author:

Date:

Signature:

Wan Hilmi Mujahid Bin W. Ismail

Sahaimi ALAYSIA

17/2/2021

اونيونرسيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Industrial Electronics) with Honours. The member of the supervisory is as follow:

ABSTRAK

Revolusi Perindustrian 4.0 telah memberi perubahan kepada industri pembuatan dalam melibatkan sistem mereka dalam teknologi rangkaian "Internet of Things" (IoT). Projek ini mensasarkan keadaan yang berlaku dalam industri sebenar dimana permasalah yang timbul apabila sistem yang sedia ada tidak mempunyai ciri-ciri IoT. Proses menyusun sepertimana yang ada dalam industri sebenar dibangun dalam platform kilang maya menggunakan perisian Factory I/O agar memastikan sistem lebih selamat dan cekap sebelum diaplikasikan dalam industri. Proses dikawal dengan menggunakan mikrokontroler Arduino Mega 2560 menggantikan fungsi "Programmable Logic Controller" (PLC) dalam operasi. Program dibangunkan mengikut arahan urutan sepertimana penggunaan PLC dan Modbus TCP/IP digunakan sebagai jalan komunikasi antara perisian dan Arduino. Ianya bergantung kepada 4 keadaan kemasukan barang ke dalam proses. Sementara itu, ESP32 melaksanakan kawalan dan pemantauan terhadap sistem melalui pelayan web sebagai aplikasi IoT. Sistem ini secara amnya boleh dipantau melalui rangkaian internet akan kemaskini perubahan yang berlaku pada urutan proses menyusun dalam masa nyata. Selain itu, terdapat ciri tambahan seperti pembilang bagi setiap barang yang telah dihasilkan dan penggera bagi kondisi tidak biasa semasa proses berlaku.

ABSTRACT

Industrial Revolution 4.0 has changed the manufacturing industry in involving their systems in Internet of Things (IoT) network technology. This project targets the situation in the real industry where problems arise when the existing system does not have IoT features. The sorting process as in the real industry is built in a virtual factory platform using Factory I/O software to ensure the system is more secure and efficient before being applied in the operation. The process is controlled using the Arduino Mega 2560 microcontroller replacing the programmable logic controller (PLC) function in the industry. The program is developed according to the sequence instructions as the use of PLC and Modbus TCP / IP is used as a communication path between Software and Arduino. It depends on the 4 conditions of item entry into the process. Meanwhile, ESP32 implements control and monitoring of the system via a web server as an IoT application. This system can generally be monitored through the internet network will update the changes that occur in the sequence of the sorting process in real time. In addition, there are additional features such as a counter for each item that has been generated and an alarm for abnormal conditions during the process.

ACKNOWLEDGEMENTS

I want to express my deepest thanks to Allah S.W.T for His blessings and greatness guided me to work on right path. First of all, I am grateful to all those people who have been directly and indirectly interested in providing support and assistance in all that I have done. I'd never be able to work successfully without these. Secondly, I would like to convey my special appreciation to my final year project supervisor, Ts Ahmad Nizam Bin Mohd Jahari @ Mohd Johari for providing guidance and advices through my bachelor's degree project. In addition, my co-supervisor, Ts. Nadzrie Bin Mohamood who assisted me in technical advice. I would also like to take this opportunity to sincerely thanks to all the lecturers Faculty of Electrical and Electronic Engineering Technology (FTKEE) for all the efforts and knowledge gained throughout my degree years. These invaluable knowledge of the field of electronic industry engineering can be implements and enhance skills for my next journey. I do not have any worthwhile words to express how thankful I am to all of them for all the time I have been there.

TABLE OF CONTENTS

TABLE OF CONTENTS	PAGE ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF APPENDICES	xvi

CHA	CHAPTER 1 INTRODUCTION	
1.1	Background	17
1.2	Problem Statement	18
1.3	Objective	18
1.4	اونيومرسيتي تيڪنيڪل مليسيا ملا ر ه	18
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
CHA	PTER 2 LITERATURE REVIEW	20
2.1	Introduction	20
2.2	Related	20
	2.2.1 Control and Monitor Automatic PLC System for Packaging Industry	20
	2.2.2 Automation Industry Simulation Software	23
	2.2.3 Programmable Logic Controller for Wireless Control and Monitoring	26
	2.2.4 Arduino Mega Microcontroller IoT-based Warehouse Automation	
		•

	2.2.5 Smart Power Output Device Using ESP8266-based Wi-Fi Module	31
	2.2.6 Lighting Control and Monitoring System Using Cayenne Web Serve	er 34
СНА	PTER 3 METHODOLOGY	38
3.1	Introduction	38
3.2	Planning	38
	3.2.1 Flowchart of general flow of PSM	39
	3.2.2 Gantt Chart	41
3.3	Design WALAYSIA	41
	3.3.1 Block Diagram of IoT Based Industrial Monitoring and Control Sys	tem
	in Industrial Machine	41
	3.3.2 Flowchart Process	42
3.4	اونیوس سینی نیکنیک Software Implementation	43
	3.4.1 Factory I/O TEKNIKAL MALAYSIA MELAKA	43
	3.4.2 Arduino IDE	44
3.5	Hardware Implementation	45
	3.5.1 Arduino Mega 2560	45
	3.5.2 Arduino Ethernet Shield	46
	3.5.3 NodeMCU ESP32	47
3.6	Conclusion	48
СНА	RESULT AND DISCUSSION PTER 4	49

4.1	Introduction	49	
4.2	Software Implementation 49		
	4.2.1 Programming Development	49	
	4.2.2 Sorting by Height Process Scene	50	
4.3	Hardware Implementation	51	
4.4	Result	52	
	4.4.1 Sorting Process	52	
	4.4.2 Factory I/O communicate using IoT application	55	
4.5	Data Analysis	57	
	4.5.1 Analysis Occurrence Condition4.5.2 Timing Diagram	57 60	
CHAP	اونيوم,سيتي تيڪنيڪل مليسة) ملاقTER		
5.1	Conclusion RSITI TEKNIKAL MALAYSIA MELAKA	63	
5.2	Recommendation	64	

REFERENCES 65

APPENDIX 66

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Su	mmary Table regarding to 2.2.1	23
Table 2.2: Su	mmary Table regarding to 2.2.2	25
Table 2.3: Su	mmary Table regarding to 2.2.3	28
Table 2.4: Su	mmary Table regarding to 2.2.4	31
Table 2.5: Su	mmary Table regarding to 2.2.5	34
Table 2.6: Su	mmary Table regarding to 2.2.6	37
Table 3.1: Ga	antt Progress Chart	40
Table 3.2: A	duino MEGA 2560 Specification	46
٤	اونيۈم,سيتي تيڪنيڪل مليسيا ملا	
U	IIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Proced	lure of the system	21
Figure 2.2: The au	tomatic packaging system ladder diagram	22
Figure 2.3: Inputs,	outputs, and configuration of PLC relay	22
Figure 2.4: KUKA	Office Lite	24
	ss unit connections	27
Figure 2.6: Serial of	data packet structure	27
Figure 2.7: Panel C	Control System	29
Figure 2.8: Blynk	اونية بريسية بتكنيكا مليسيا	30
Figure 2.9: ESP82	66 ERSITI TEKNIKAL MALAYSIA MELAKA	30
Figure 2.10: D1 M	lini Wi-Fi board built on ESP8266 chip	32
Figure 2.11: Circu	it diagram of industrial relay controller to Arduino Mega	32
Figure 2.12: Softw	vare communication set-up	33
Figure 2.13: Scher	natic installation	35
Figure 2.14: Archi	tecture of smart lighting system	36
Figure 2.15: Displa	ay on the web dashboard and Cayenne apps	36
Figure 3.1: Major	steps in Methodology	38

Figure 3.2: Flowchart of general flow PSM	39
Figure 3.3: Proposed monitoring and control system	40
Figure 3.4: Block diagram of the system	41
Figure 3.5: Flowchart of the proposed system	42
Figure 3.6: Factory I/O Software	43
Figure 3.7: Arduino sketch	44
Figure 3.8: Arduino MEGA 2560 board	45
Figure 3.9: Arduino Ethernet Shield module	47
Figure 4.1: Arduino IDE software layout	50
Figure 4.2: Virtual simulation scene of sorting process	51
Figure 4.3: Hardware connection	51
Figure 4.4: Running sorting process	53
Figure 4.5: Condition 1	53
UNIVERSITI TEKNIKAL MALAYSIA MELAKA Figure 4.6: Condition 2	53
Figure 4.7: Condition 3	54
Figure 4.8: Condition 4	54
Figure 4.9: Factory I/O webpage	56
Figure 4.10: Graph for condition 1	57
Figure 4.11: Graph for condition 2	58
Figure 4.12: Graph for condition 3	58
Figure 4.13: Graph for condition 4 xiv	59

Figure 4.14: Timing diagram for condition 1	60
Figure 4.15: Timing diagram for condition 2	61
Figure 4.16: Timing diagram for condition 3	61
Figure 4.17: Timing diagram for condition 4	62

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix 1 Overview Factory I/O Webserver

66

CHAPTER 1

INTRODUCTION

1.1 Background

The development of technology today in the industrial world has accelerated especially in the manufacturing industry. The success of this fourth revolution or known as IR4.0 empowered by the Internet of Things (IoT) in the application industry to increase productivity and improve operations through real-time data access. This technology leverages production machine communication to the cloud allowing data flow to be transferred. In addition, it provides the ability to monitor and control the process remotely which allows production to be changed quickly in real time when it is needed. This is done by controlling and monitoring the machine remotely based on real data obtained from various parts of the factory even throughout the factory.

This smart factory is simulated using 3D virtual factory which adopted to the real UNIVERSITI TEKNIKAL MALAY SIA MELAKA system. It enables to build a virtual process such as sorting process and assembler process in the actual manufacturing industry. Equivalent systems that have been designed with virtual factories allow IoT development to be significantly analysed before the system is applied. Furthermore, virtual factory assembling subsystem using a library of industrial component including sensors, conveyors, and many others. The virtual factory-based PLC training platform also interfacing controller physically by using microcontroller, SoftPC, TCP / IP and other technologies. Hence, IoT-based systems developed through virtual processes enables production machines to be controlled and monitored remotely with connections from internet.

1.2 Problem Statement

Industrial companies face problems with indirect data collection in real time where machines are only visually monitored by manual due to non-IoT-based manufacturing equipment. Companies may be afraid to replace old devices that still work well even those are 20 years or more old. Consequently, it requires the development of a new system, a lot of cost investment and replace an assembly-line equipment which disrupts production. The actual factory process is simulated using virtual factory software requires human intervention either to control or monitor it. The upgrade virtual process with IoT features can implement control systems and monitoring over the internet.

1.3 Objective

The aims of this project are based on problem statement above:

- 1) To design and develop machine using virtual factory platform.
- 2) To develop control on virtual factory system using microcontroller. UNIVERSITI TEKNIKAL MALAYSIA MELAKA
- 3) To develop internet-based monitoring and control system.

1.4 Scope

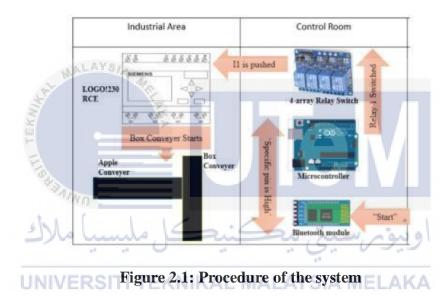
This project focuses primarily on the use of virtual process in control and monitoring systems through the implementation of IoT. This 3D virtual factory simulation designs and develops system into an actual sorting process in industrial manufacturing. The system develops by Arduino as a controller assisted by Arduino Ethernet Shield capable to control the virtual factory process through Modbus TCP/IP communication. The virtual process factory also can be control and monitor via the web server. Moreover, the features such as a counter will be added monitors the value of production for maintenance to ensure quality of productivity.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter focuses on term of IoT relates to control and monitor the industrial machine application by simulation process. Review of audit and centralize various research articles on tests that have been successfully conducted by analysts or experts who are significantly different in the field of study. It also relates to identify and review existing critiques within the topic to justify this research by uncovering gaps in current research. This review adds even better understand the project development and provide a basic idea of how it can help current project development.


2.2 Related

Research on journals or sources related to the subject field will be presented in this section. The purpose of the literature review is to collect valuable knowledge, as well as to gather relevant details that might be useful in this study.

2.2.1 Control and Monitor Automatic PLC System for Packaging Industry

A Human Machine Interface (HMI) implemented for a Programmable Logic Controller (PLC) based automation in packaging process which may be remotely monitored and controlled by mobile application(Mofidul et al. 2019). An IR sensor used to detect objects and provide feedback to the Arduino Uno to move the relay. All the conditions for relays are taken as PLC input. An HMI is designed to create a communication channel between PLC-based operators and factories through android applications and microcontroller.

Model considers one conveyor belts for items to be transport to the destined box and another conveyor belts to transport unfilled boxes and filled boxes. The PLC acts as a controller for high-speed DC motor that rotates the conveyor belt. The interface designed to control and monitor the processes depending on Bluetooth module, Arduino uno and android platform.

The implementation of the Software includes the PLC ladder diagram built android application and configured programs as remote control and monitoring system for Arduino. It is also applied utilizing LOGO! Soft V8 in programming and operation of the introduced model. For a quicker, straightforward, and space-saving solution, LOGO! is an ideal selection. LOGO! Soft Comfort minimizes wiring with easier installation.

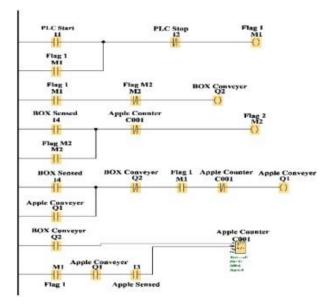
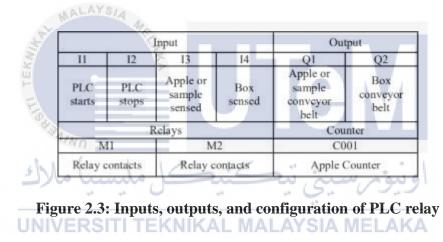



Figure 2.2: The automatic packaging system ladder diagram

Android Studio (emulator) is used to develop Android-based PLC monitors application as a remote control. This application provides for remote observation with a single row display and three control buttons.

Author(s)	Description	Method
Mofidul et al.	This PLC with implementation	Android Studio is used in sending
(2019)	of an HMI that can be controlled	command signals and receiving
	and monitored for a prototype of	status by the Arduino Uno via
	automated packaging process	Bluetooth. The Switching Relay
	applications through mobile	operates in this process to provide
	phones. Operators and factories	plc input from Arduino as control
	communicate same path to	mode. Arduino receives output from
2	minimize the overall cost of	PLC as monitoring mode. Ladder
Kulk	using SCADA.	diagram of PLC develops by
III TE		LOGO! Soft V8.
1943 1943		

Table 2.1: Summary Table regarding to 2.2.1

2.2.2 Automation Industry Simulation Software

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

According to Sciences (2018) in his thesis aims to create a 3D model of the robotics laboratory which to be used with the KUKASim together with finding a suitable method for transferring code to the actual robots. KUKASim, a simulation software in which the user can make an environment and the robot programming simulation. It permits the offline programming of the robot and since a real environment can be designed, the software is helpful to attempt the program before downloading it to the robot. That could be useful so as to evade impacts and to advance the program. The software gives the chance to have a real time connection with the KUKA's virtual