

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF CONVEYOR SYSTEM INTEGRATED WITH VISION-BASED INSPECTION

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automotive & Robotics) with Honours.

UNIVERSITI TEKNIKAbyMALAYSIA MELAKA

NUR INSYIRAH HANANI BINTI MOHD. LOK PI B071610424 950926-07-5006

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF CONVEYOR SYSTEM INTEGRATED WITH VISION-BASED INSPECTION

Sesi Pengajian: 2019

Saya NUR INSYIRAH HANANI BINTI MOHD. LOK PI mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

] _{TERHAD*}

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

 \boxtimes

TERHAD

TIDAK

SULIT*

Yang benar,

filipatani

NUR INSYIRAH HANANI BINTI

MOHD. LOK PI

Alamat Tetap: 20, Psn Kota Permai 3,

Tmn Kota Permai, 14000 Bukit Mertajam,

Pulau Pinang.

Disahkan oleh penyelia:

TS. AHMAD IDIL BIN ABDUL

RAHMAN

7

Cop Rasmi Penyelia

AHMAD IDIL BIN ABDUL RAHMAN Pensyarah Kanan Jabatan Teknelogi Kejuruteraan Elektrik Fakulti Teknelogi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka

Tarikh: 6 Disember 2019

Tarikh: 6 Disember 2019

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF CONVEYOR SYSTEM INTEGRATED WITH VISION- BASED INSPECTION is the results of my own research except as cited in references.

Signature: Author: NUR INSYIRAH HANANI BINTI MOHD. LOK PI 20 DECEMBER 2019 Date: UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours. The member of the supervisory is as follow:

Signature:

Co-supervisor:

Ts. Johar Akbar Bin Mohamat Gani

ABSTRAK

Projek ini memfokuskan kepada reka bentuk dan pembangunan sistem pengantar diintegrasikan dengan ciri-ciri penglihatan mesin. Sistem ini juga digunakan untuk menjalankan pemeriksaan terhadap kualiti dan ciri-ciri buah-buahan itu. Sistem pengantar ini juga akan digunakan sepanjang proses pemeriksaan, dimana buah-buahan itu akan diasingkan mengikut warna dan juga saiznya. Prosedur ini dilakukan untuk memastikan tiada sebarang ralat yang berlaku sepanjang proses klasifikasi ini dijalankan. Bagi sistem berasaskan ciriciri penglihatan mesin pula, ia digunakan khas untuk memeriksa ketepatan dimensi buahbuahan tersebut. Data yang diterima daripada program pemprosesan imej akan dianalisis mengikut kepada warna dan saiz kemudiannya buah-buahan itu akan diasingkan setempat. Kepentingan projek ini adalah untuk mengenal pasti warna dan saiz buah-buahan itu dengan betul supaya proses klasifikasi dapat berjalan dengan lancar. Tambahan pula, projek ini dapat mengurangkan kos dan masa yang diambil untuk mengasingkan buah-buahan. Selain itu, projek ini juga dijangka dapat meningkatkan ketepatan dan produktiviti dalam proses pemeriksaan dan pengasingan berdasarkan kualiti buah-buahan.

ABSTRACT

This project focus on the design and development of a conveyor system integrated with vision-based inspection. This system will be utilized to demonstrate the inspection of fruits features. The conveyor system will be used throughout the inspection process and after that the fruits will be sorted based on its colors and sizes. This method is carried out to make sure no error or false of fruit sorting happened during the process. For the vision-based system, it is mainly used to check the fruits dimensional accuracy. The collected data from the image processing program will be analyzed based on size and color then product will be exiled. The importance of designing this system is its ability to identify the colors and sizes of fruits correctly. In addition, this project can increase the productivity of fruit sorting process as well as substantially reduce the cost and time taken to sort the fruits. This is also to improve the accuracy of the fruit's inspection.

DEDICATION

To my beloved parents Mr. Mohd. Lok Pi Bin Hussain and Mrs. Rizal Hazini Binti Abdul Hamid, I thank them both appreciatively for all their moral supports through my thick and thin during the process of completing this Final Year Project. They helped me a lot in terms of financial and moral support which encourages me to perform whole-heartedly towards the project accomplishment.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to Almighty Allah S.W.T since enabling me to complete this report and project of "**Development of Conveyor System Integrated** with Vision-Based Inspection" successfully.

I would also want to convey my appreciation to Universiti Teknikal Malaysia Melaka (UTeM) and particularly to the Faculty of Electrical & Electronic Engineering Technology (FTKEE) for giving me the opportunity to pursue my Degree in Electrical Engineering Technology (Industrial Automation & Robotics) with Honors.

I convey my sincere thankfulness to my honourable Supervisor, Ts. Ahmad Idil Bin Abdul Rahman and Co-Supervisor, Ts. Johar Akbar Bin Mohamat Gani. Without their kind direction and proper guidance, this report and project would not have been a success. In every stage of this project development, they kept giving me advice and full supervision to complete the project successfully.

I would also like to thanks my fellow colleagues that always help me in giving positive support and brainstorming useful idea to make sure my Final Year Project is fully achieved.

TABLE OF CONTENTS

ABST	ΓRAK	vi
ABST	ГКАСТ	vii
DED	ICATION	viii
ACK	NOWLEDGEMENT	ix
TAB	LE OF CONTENTS	x
LIST	OF TABLES	xiv
LIST	OF FIGURES	XV
LIST	OF APPENDICES	xviii
LIST	اونيوبرسيتي تيڪنيڪل مليسيا OF SYMBOLS	xix
LIST	OF ABBREVIATIONS	XX
СНА	PTER 1 INTRODUCTION	1
1.0	Introduction	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Scope	6
	1.4.1 Conveyor System	6

	1.4.2	Product	6
	1.4.3	Smart Webcam	6
	1.4.4	Vision System	6
	1.4.5	Image Processing Software	6
1.5	Report	Outline	7
CHA	PTER 2	LITERATURE REVIEW	8
2.0	Introdu	ction	8
2.1	Literat	ure Review on Past Project	8
	2.1.1	Fruit Grading Using Digital Image Processing Techniques	8
	2.1.2	Machine Vision Simulation for Sorting Orange Fruits	11
	2.1.3	Weight Based Fruit Sorting System	16
	2.1.4	Enhanced Technique for Sorting and Grading the Fruit Quality Using	
		MSP430 Controller	19
2.2	Summ	ary	20
CHA			
CHA	PTER 3	METHODOLOGY	27
3.0	Introdu	action	27
3.1	Project Design 27		27
3.2	Project	t Development	29
3.3	Softwa	are Development	31

	3.3.1	MATLAB R2019b	31
	3.3.2	Image Processing and Image Analysis	36
	3.3.3	Arduino IDE Software	37
3.4	Hardw	are Development	41
	3.4.1	Ultrasonic Sensor	42
	3.4.2	Arduino Mega 2560 Microcontroller	43
	3.4.3	Colohas HD- Smart Mic Webcam	44
	3.4.4	Personal Computer(PC)	45
	3.4.5	LCD_I2C Display	46
	3.4.6	Conveyor System	48
	3.4.7	Motor Driver	49
	3.4.8	12-V Direct Current (DC) Motor	50
	3.4.9	12-V Stepper Motor	51
	3.4.10	12-V LED	52
	3.4.11	Configuration of Hardware Connection	53
3.5	Summ	ary	54
CILL			
СНА	IER 4	RESULT AND DISCUSSION	22
4.0	Introdu	uction	55
4.1	Runni	ng System Operation	55
4.2	Result	From System Operation	59
		xii	

	4.2.1	MATLAB Coding To Initialize Camera Lens	59
	4.2.2	MATLAB Coding To Perform Image Segmentation	61
	4.2.3	MATLAB Coding For Blob And Noise Removal	62
	4.2.4	MATLAB Coding For Fruit's Area Measurement	63
4.3	Analy	sis Of The Captured Image	64
4.4	Analy	sis On The Image Threshold	67
4.5	Analy	sis on The Sorting System	69
4.6	Graph	ical User Interface (GUI)	70
4.7	Summ		75
СНАР	TER 5	CONCLUSION AND RECOMMENDATION	76
5.0	Introd	اونيوم سيتي تيڪنيڪل مليسيا ملاق	76
5.1	Conclu	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	76
5.2	Projec	t Recommendation	77

REFERENCES 78

APPENDIX 80

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Summary Of The Previous Project	24
Table 4.1:	Analysis Image Of An Apple	63
Table 4.2:	Analysis Of Apple Sizes	65
Table 4.3:	Analysis Of Threshold Value	66

LIST OF FIGURES

FIGURE	TITLE PA	GE
Figure 1.1:	Apples' Sorting Machine	2
Figure 2.1:	Overall Functioning Of The Fruit Grading System	10
Figure 2.2:	Schematic Diagram Of The Machine Vision Prototype	12
Figure 2.3:	The Flowchart For Sorting Orange Fruit Depending On Color & Size	e 13
Figure 2.4:	Steps In Segmentation Process	14
Figure 2.5:	RGB input image and binary output image	14
Figure 2.6:	RGB Input Image And Binary Output Image	15
Figure 2.7:	Diagram Of The Sorting System	17
Figure 2.8:	Block Diagram Of The Whole Sorting System	17
Figure 2.9:	Flowchart Of The Sorting System	18
Figure 2.10:	Block Diagram For The Components Involved	20
Figure 2.11:	The Position Of The Camera	21
Figure 2.12:	Flowchart Of The Monitoring Process	22
Figure 2.13:	The Result Sample Of The Guava Fruit	23
Figure 3.1:	Block Diagram Of Project Design	28
Figure 3.2:	Flowchart Of Overall Project Processes	30

Figure 3.3:	MATLAB R2019a Software Interface	32
Figure 3.4:	Flowchart Of MATLAB Coding	35
Figure 3.5:	Arduino IDE Software Interface	37
Figure 3.6:	Flowchart of the Arduino coding	40
Figure 3.7:	Connection Of Project Hardware To Arduino Mega	41
Figure 3.8:	An Ultrasonic Sensor (Hc-Sr04)	42
Figure 3.9:	Arduino Mega 2560 With Configuration Pins	43
Figure 3.10:	Colohas HD-Smart Mic Webcam	44
Figure 3.11:	PC type Acer E-15	45
Figure 3.12:	LCD Display With Configuration Pins	46
Figure 3.13:	I2C Interface Module For LCD	47
Figure 3.14:	A Conveyor System	48
Figure 3.15:	L298N And ULN2003 Motor Driver	49
Figure 3.16:	12V DC Motor	50
Figure 3.17:	12V Stepper Motor	51
Figure 3.18:	12-V LED Used In This Project	52
Figure 3.19:	Hardware connection to Arduino Mega	53
Figure 4.1:	Overall Flowchart Of The Project	58
Figure 4.2:	MATLAB Coding To Initialize And Open The Camera Lens	59
Figure 4.3:	Webcam Opened After Getting Signal From Arduino	60
Figure 4.4:	MATLAB Coding For Image Segmentation (Otsu Method) xvi	61

Figure 4.5:	Result Image Of Otsu Method	61
Figure 4.6:	MATLAB Coding For Blob And Noise Removal	62
Figure 4.7:	Result Image After Blob And Noise Removal	62
Figure 4.8:	MATLAB Coding For Fruit's Area Measurement	63
Figure 4.9:	The Image Measurement Method	63
Figure 4.10:	Equal Error Rate (EER) Graph Obtained From MATLAB	68
Figure 4.11:	The Graphical User Interface Used In This Project	69
Figure 4.12:	The Offline Box For Image Inspection	70
Figure 4.12(a):	The Inspection Using Offline Image Using GUI	70
Figure 4.13:	The GUI Box Used To Manually Capture Image.	72
Figure 4.14:	GUI Box For Manual Inspection Process	73
Figure 4.15:	The Segmentation Option Box In The GUI	73
Figure 4.16:	The Inspection Box Used In The GUI	74

LIST OF APPENDICES

APPENDIX

TITLE

Appendix 1

Gantt Chart for Final Year Project

PAGE

74

LIST OF SYMBOLS

- v Voltage
- cm Centimetre
- m Meter
- M Mega
- P Pixel
- L Distance

LIST OF ABBREVIATIONS

UN	United Nations
LED	Light Emitting Diode
RGB	Red Blue Green
PC	Personal Computer
PLC	Programmable Logic Controller
CVS	Computer Vision System
CPU	Central Processing Unit
I/O	Input and Output
CDC	Color Digital Camera
РСВ	Printed Circuit Board
LCD	Liquid Crystal Display
GMM	Gaussian Mixture Model
SVM	Support Vector Machine
DC	Direct Current
IR	InfraRed
CMOS	Complementary Metal-Oxide-Semiconductor
API	Application Program Interface
IDE	Integrated Drive Electronics
HD	High Definition
USB	Universal Serial Bus
BMP	Bitmap

JPGJoint Photographic GroupI2CInter-CICIntegrated CircuitsRPMRevolution Per MinuteGUIGraphical User InterfaceLEDLight Emitting Diode

CHAPTER 1

INTRODUCTION

1.0 Introduction

This first chapter will describe in details about the project background, problem statement, objectives and scope concerning this project.

1.1 Background

The rate of birth and death of human population are now having a divergence results from the rapid growth of the world's population over a century [1]. In this day and age, the world population has been quadrupled. Estimated in 2050, the number may reach 9.7 billion people living on earth. The developing countries are growing along with rising incomes, thus driving up the global food demand [2]. United Nations (UN) states that in Malaysia presently, the current population in 2019 is 32.45 million which equivalents to 0.42% of the total world population. The massive growth of human population will lead to high demand of food supply

This scenario alarming the stakeholders that something has to be done to solve this problem especially in the fruit industry in order to produce end products that are in good condition and have quality to be sorted accordingly. Sorting numerous quantities of fruits will affect its quality because of the factors contribute during the production process, which are time taken to sort the fruits due to manual sorting in production and lack of technology applied.

Sorting plays an important role in any type of industry such as the fruit industry to improve the efficiency of the process. The main task is to sort and classify the fruits according to its colors and sizes, thus defining the sorting classes for the many varieties of fruits. This system will use a vision-based system that is connected to a conveyor that makes the sorting system more efficient and less time consuming. Figure 1.1 shows an apples' sorting machine using a conveyor.

Figure 1.1: Apples' sorting machine [3]

Sorting process in the fruit industry nowadays are mostly done by using the weight sensor to categorize the fruits. The chances to get rotten fruit in packaging is potentially high. A human operator cannot spot the bad fruits in a blink of an eye especially involving larger scale of fruit quantity. The additional of the conveyor system increase the industry productivity by saving time to transfer the fruits from one place to another.

Thus, this project will draw in the development of a conveyor system with vision-based integration where it is suitable to be used in any fruit industry. However, this project will carry out using one type of fruits varying with its colors and sizes.

1.2 Problem Statement

An innovative technology has widely been created, designed and constructed in order to fulfil the demand of having a superior grade of fruits. The fruit industry needs to assure the condition of the fruits from the beginning until it is ready to be shipped or distributed to the fruit suppliers are remain in good quality throughout the process. Several rotten fruits could bring losses to the company. This is something that needs to be avoided to prevent waste.

Human tends to do mistakes in sorting things manually especially when it comes in large amount. This also may be due to fatigue caused by long working hours and not consistent in choosing good quality fruits. Maintaining the product quality and to have zero percentage of mistakes done during the sorting process are highly demanded by the producer.

In addition, using manual sorting will lead to higher cost in terms of labors' wage. The sorting operation by hands are time consuming and the workers are not accurate in choosing the correct grades and sizes of fruits. This will affect the end products quality which could lead to mixed up and scattered fruit grades non-accordingly. Every company aims to market and deliver their products estimated around thousands of fruit packages or boxes. Manual sorting method is not reliable for larger companies who deliver huge amount of fruits to be sorted.