

SYNTHESIS AND CHARACTERIZATION OF MXENE-MOS2 HYBRID ELECTRODE FOR SUPERCAPACITOR APPLICATION

This report is submitted in accordance with the requirement of Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Hons.)

AINO

TAN LEK WEE

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

B051710165

951006-13-5103

FACULTY OF MANUFACTURING ENGINEERING

Year 2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: SYNTHESIS AND CHARACTERIZATION OF MXENE-MOS2 HYBRID ELECTRODE FOR SUPERCAPACITOR APPLICATION

Sesi Pengajian: 2020/2021 Semester 2

INIVERSITI TEKNIKAL MALAYSIA MELAK

Saya TAN LEK WEE (951006-13-5103)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan SULIT Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ TERHAD badan di mana penyelidikan dijalankan) UNIVERSITI TEKNIKAL MALAYSIA MELAKA Disahkan oleh: TIDAK TERHAD ASYADI AZAM BIN MOHD ABIC Alamat Tetap: PROFESOR Lot 4781, Desa Permai Phase 2, FAKULTI KEJURUTERAAN PEMBUATAN Jalan Tunku Abdul Rahman, Taman Tunku, UNIVERSITI TEKNIKAL MALAYSIA MELAKA 98000 Miri, Sarawak Tarikh: 1 SEPTEMBER 2021 Tarikh: 12 SEPTEMBER 2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitle "Synthesis and Characterization of MXene-MoS2 Hybrid Electrode for Supercapacitor Application" is the result of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirements for the Degree of Bachelor of Manufacturing Engineering (Hons.) The member of supervisory committee is as follow:

FAKULTI KEJURUTERAAN PEMBUATAN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Bahan 2D telah menarik minat orang ramai dalam bidang sains bahan. Contohnya 2D Molybdenum Disulfide (MoS2) adalah sesuatu bahan yang cerah disebabkan struktur bahan ini memberikan tapak penyerapan dan jugalah laluan difusi yang pendek, tetapi menyusun lembaran MoS2 secara bertambah akan menjejaskan sifat fungsinya serta menurunkan efisiensi. Sesuatu strategi yang dicadangkan adalah menjadikan kedua-dua bahan MoS2 dan MXene sebagai bahan hibrid. 2D MXene boleh menerima banyak kation berlainan antara lapisannya dan jugalah mempunyai kekonduksian elektrik yang bagus. Ciri 2D MXene yang istimewa ini telahpun menarik perhatian dari pelbagai bidang. Dalam kajian ini, bahan dan elektrod yang berhibird MXene/MoS2 telah disintesis dan dibuat pada mulanya dengan menggunakkan teknik pelapisan buburan yang berkonvensional. Diikuti dengan Diffractormetri X-Ray yang menunjukkan kekristalan bahan hibird dan kedua-dua MXene dan MoS2 telahpun berjaya digubah. Selainnya, kajian secara kritikal telahpun dilakukan pada Spektroscopi Raman supaya menberikan hasil jangkaan bahan hibird MXene/MoS2 dalam mempunyai kualiti kristal yang baik dan juga pada Mikroscopi Pengimbasan Elektron yang diharapkan dengan mempunyai luas permukaan yang lebih besar supaya menghasilkan prestasi yang lebih baik. Kemudian, prestasi elektrokimia seperti Ujian Voltametri Siklik dan Caj-Discaj Galvanostatik dalam elektrolit akueus telah dinilaikan. Didapati bahawa kapasiti spesifik yang tertinggi dicapai dalam Ujian Voltametri Siklik dan Caj-Discaj Galvanostatik adalah 15.736Fg⁻¹ dan 1.36Fg⁻¹ yang dihasilkan daripada komposisi hibird 40:40 MXene/MoS2. Hasil yang terdapat dalam kajian ini telah menunjukkan hibrid 40:40 MXene/MoS2 sebagai sampel yang paling optimum di mana bahan MXene dipercayai sebagai faktor yang berpositif dalam membantu prestasi kapasitif ini dan jugalah menunjukkan potensinya dalam aplikasi penyimpanan tenaga.

ABSTRACT

Two Dimensional (2D) material has attracted much interest in material science field. 2D material such as Molybdenum Disulfide (MoS2) is such a promising material due to its structure provided absorption sites as well as shorter diffusion path, but restacking of MoS2 sheets affect its functional properties which therefore resulting with low efficiency in the device. A strategy has been proposed which is to compose MoS2 with MXene material to form a hybrid material. 2D MXene can host many different cations between its layers and also it has good electrical conductivity. Its special properties have attracted attention from various field. In this study, the MXene/MoS2 hybrid material and electrodes have been synthesized and fabricated at first by applying the conventional slurry coating technique. Followed by the X-ray Diffraction which showed the the hybrid material with crystalline structure and successfully composited between both MXene and MoS2. Furthermore, critical review has been conducted on Raman Spectroscopy which led to an expectation result of MXene/MoS2 hybrid material to have a good crystalline quality as less structural defects and also on Scanning Electron Microscopy which in expectation to have greater surface area that leads to better performance. Later, its electrochemical performances in testing such as Cyclic Voltammetry and Galvanostatic Charge-Discharge in aqueous electrolyte were evaluated. It was found that the highest specific capacitances as achieved in this study were 15.736Fg⁻¹ and 1.36Fg⁻¹ which attributed to hybrid composition of 40:40 MXene/MoS2 in respecting to cyclic voltammetry and galvanostatic charge-discharge. The results indicated 40:40 MXene/MoS2 hybrid as the most optimal sample at which MXene material is believed as a positive factor in assisting its capacitive performance, thus suggesting its potential in energy storage application.

DEDICATION

To my only

beloved father, Tan Leong Huat

appreciated mother, Ng Soon Lee

adored sisters, Tan Gek Jin and Tan Yee Li

ALAYSIA

adored brother, Tan Lek Jin

and all my helpful friends

for giving me moral and financial supports, cooperation, encouragement, and also understandings towards of this final year project completion.

> UNIVERSITI TEKNIKAL MALAYSIA MELAKA Thank You So Much & Love You All Forever

ACKNOWLEDGEMENT

I am appreciated that there are so many people around who shared their supports and provided directly or indirectly guidance throughout the completion of this Final Year Project 1.

First and foremost, I would like to express my greatest gratitude and thank to my respected supervisor, Prof. Ir. Dr. Mohd Asyadi 'Azam Bin Mohd Abid for his given advices, provided guidance, and endless support. With his unending support, helpful advices, and appreciated guidance, it did really help me in motivating myself to contribute throughout this final year project as well as solving the difficulties in any task given.

Furthermore, I would like to give a huge thanks to my family members and friends who gave me much of their cooperation, motivation, as well as mentally and financially supports in completing of this final year project. Without their help, I would be facing hardship in doing this final year project.

Last but not least, I would like to thank everybody who ever assisted me throughout this final year project and also expressing my apology to those have not been mentioned.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	х
List of Figures	xi
List of Abbreviations	XV
List of Symbols	xviii
اونية مستر تيكنيكا مليسيا ملاك	
CHAPTER 1: INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Objectives	4
1.4 Scope of Study	4
1.5 Significant of Study	5
1.6 Report Organization	5
1.7 Summary	6

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction 7		
2.2 A General Overview of the Construction and Mechanism of Supercapacitors		
2.2.1 Type of Supercapacitors Based on the Charge Storage Mechanism	7	
2.2.1.1 Electrochemical Double Layer Capacitor	7	
2.2.1.2 Pseudocapacitor	9	
2.2.1.3 Hybrid	10	
2.2.2 Application of Supercapacitors in Various Sector	12	
2.3 Two Dimensional Electrode Materials for Advanced Supercapacitors	12	
2.3.1 Two-Dimensional Materials for Supercapacitors	12	
2.3.1.1 Properties of MoS2	13	
2.3.1.2 Different Strategies to Prepare MoS2 Supercapacitors	14	
2.3.2 MXene-Based Materials for Hybrid Supercapacitors	16	
2.3.2.1 Properties of MXene	16	
2.3.2.2 Different Strategies to Prepare MXene Supercapacitors	18	
2.3.2.3 Synthesis of MXene/MoS2 Hybrid	20	
2.4 The Influence of Electrolyte Materials in Supercapacitors	21	
2.4.1 Aqueous Electrolyte	21	
2.4.2 Non-aqueous Electrolyte	22	
2.5 Electrode Characterization by Different Analytical Techniques	24	
2.5.1 X-Ray Diffraction (XRD)	24	
2.5.2 Field Emission (FE) SEM and SEM	26	
2.5.3 Raman Spectroscopy	29	

1 .

2.6 Electrochemical Measurement	31
2.6.1 Cyclic Voltammetry (CV)	31
2.6.2 Galvanostatic Charge- Discharge (GCD)	34
2.7 Summary	37
CHAPTER 3: METHODOLOGY	
3.1 Introduction	38
3.2 Chemical and Laboratory Apparatus	40
3.2.1 Chemicals	40
3.2.2 Laboratory Apparatus	41
3.3 Synthesis of MXene/MoS2 Hybrid	42
3.3.1 Schematic of MXene/MoS2 Hybrid Synthesis and Electrode Preparation	42
3.3.2 The Optimize Composition of MXene/MoS2 Hybrid	43
3.4 Fabrication of MXene/MoS2 Hybrid Electrode	44
3.5 Characterization and Analysis of MXene-MoS2 Hybrid Material	46
3.5.1 The Crystallographic Characteristics by X-Ray Diffraction (XRD)	46
3.5.2 Critical Review on FESEM and SEM	47
3.5.3 Critical Review on Raman Spectroscopy	48
3.6 Evaluation on Electrochemical Performance of MXene/MoS2 Hybrid Material	49
3.6.1 Cyclic Voltametry (CV)	49
3.6.2 Galvanostatic Charge-Discharge (GCD)	50
3.7 Summary	51

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Introduction	52
4.2 Fabrication of MXene/MoS2 Hybrid Electrode	52
4.3 Characterization and Critical Review on Hybrid Electrode	54
4.3.1 Critical Review on Raman Spectroscopy	54
4.3.2 X-Ray Diffraction Analysis (XRD)	56
4.3.3 Critical Review on FESEM and SEM	59
4.4 Electrochemical Performance of Hybrid Electrode	62
4.4.1 Cyclic Voltammetry (CV) in 6M KOH Electrolyte	62
4.4.1.1 CV of pure MoS2 electrode	62
4.4.1.2 CV of MXene/MoS2 hybrid electrode	64
4.4.2 Galvanostatic Charge-Discharge (GCD) in 6M KOH Electrolyte	68
4.4.2.1 GCD of pure MoS2 electrode	68
4.4.2.2 GCD of MXene/MoS2 hybrid electrode	68
اويونرسيتي تيڪنيڪل مليسيا ملاك	73
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

1

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1 Conclusion	74
5.2 Recommendation	75
5.3 Sustainability	75
5.4 Engineering Complexity	75
5.5 Lifelong Learning	76

ix

LIST OF TABLES

•

2 .

Table 3.1 List of Chemicals Example	40
Table 3.2 List of Laboratory Apparatus Example	41
Table 3.3 Composition of MXene/MoS2 in different mass weight ratio	43
Table 4.1 Specific Capacitance of pure MoS2 Electrode	63
Table 4.2 Specific Capacitance of 20:60 MXene/MoS2 Hybrid Electrode	64
Table 4.3 Specific Capacitance of 30:50 MXene/MoS2 Hybrid Electrode	65
Table 4.4 Specific Capacitance of 40:40 MXene/MoS2 Hybrid Electrode	66
Table 4.5 Specific Capacitance of MXene/MoS2 Hybrid Electrodes at 0.1 Ag ⁻¹	70
Table 4.6 Specific Capacitance of MXene/MoS2 Hybrid Electrodes at 0.5Ag ⁻¹	70
Table 4.7 Specific Capacitance of MXene/MoS2 Hybrid Electrodes at 1.0Ag ⁻¹	70
A 10 YO M REAL PROPERTY AND A 10 YO M REAL PROPERTY AND A 10 YO M REAL PROPERTY AND A 10 YO M	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

Figure 2.1	Schematic Diagram of Basic EDLC principle	8
Figure 2.2	Basic view of double layer with absorbed ions which submitted their charge	
	onto electrode in clarifying pseudocapacitance.	9
Figure 2.3	Schematic of Hybrid Supercapacitor.	11
Figure 2.4	Chemical Structure of MoS2 in two layers	13
Figure 2.5	Schematic Diagram of MXene formed from MAX phase.	16
Figure 2.6	XRD results of LE-MoS2 nanorods and MoO3 nanorods (NRs)	24
Figure 2.7	XRD patterns of $Ti_3C_2T_x$ MXene/ PAN nanofibers (10:8 wt.%) and $Ti_3C_2T_x$	
	MXene film	25
Figure 2.8	XRD patterns of MoS2 NS, MXene, MMX	25
Figure 2.9	XRD patterns of MAX phase (Ti ₃ AlC ₂), MXene, MoS2, and MoS2/MXene UNIVERSITI TEKNIKAL MALAYSIA MELAKA	26
Figure 2.10	FESEM image of MoS2 in high magnification scale showing flower like	
	morphology.	27
Figure 2.11	FESEM images of MoS2 (a) and MoS2/rGO nanocomposite (b)	27
Figure 2.12	SEM image of MAX phase Ti_3AlC_2 and $Ti_3C_2T_x$ MXene	28
Figure 2.13	SEM image of accordion-like MXene and MoS2/MXene hybrid	28
Figure 2.14	Raman Spectra of 375°C and 475°C deposited MoS2 film (left), 475°C	
	deposited MoS2 film samples after post-annealed (right)	29

Figure 2.15 Raman Spectra of GO, MXene flakes, rGO, and rGO-MXene hydrogel (left), detail zoomed in 100-1000cm ⁻¹ (right)	30
Figure 2.16 Raman Spectra of pure $Ti_3C_2T_x$ MXene and MMX	31
Figure 2.17 CV curves of PANI, PANI/MoS2-1, PANI/MoS2-2, and PANI/MoS2-3	
electrodes (left) and CV curves of PANI/MoS2-2 in different scan rate(right).	32
Figure 2.18 CV curves at a scan rate of 0.05Vs ⁻¹ and inset of corresponding linear fit of	
peaks current vs scan rate.	33
Figure 2.19 CV curves of Ni foam, MoS2 NS, MXene, and MMX in scan rate of 10mVs ⁻¹	
(left) and CV curves of MMX in different scan rates (right)	34
Figure 2.20 GCD curves of LE-MoS2 NRs(left) and MoS2 prepared from α -MoO ₃ (right)	35
Figure 2.21 Specific Capacitance of LE-MoS2 NRs and MoS2 prepared from α-MoO ₃	35
Figure 2.22 GCD profiles and Coulombic efficiency of MP12 in various current density	36
Figure 2.23 GCD curves of MoS2/MXene from 0.4 until 4.0Ag ⁻¹	36
Figure 2.24 GCD curves of MXene and MoS2/MXene at 0.4Ag ⁻¹	37
اونيوم سيتي تيكنيكل مليسيا ملاك	
Figure 3.1 Experiment Flowchart TEKNIKAL MALAYSIA MELAKA	39
Figure 3.2 Schematic Illustration of (a)MXene/MoS2 Synthesis and (b)Electrode	
Preparation	43
Figure 3.3 Brief Flow of MXene/MoS2 Hybrid Electrode Fabrication	44
Figure 3.4 Schematic Drawing of Slurry Preparation for Characterization Purpose	45
Figure 3.5 Schematic Drawing of Slurry Preparation for Electrochemical Testing	45
Figure 3.6 Schematic Drawing of Electrode Fabrication	45
Figure 3.7 Example of XRD Machine: Thermo Scientific TM ARL TM EQUINOX 3000	

xii

X-ray Diffractometer	47
Figure 3.8 Example of SEM Machine: JSM IT-800 Field Emission Scanning Electron Microscope	48
Figure 3.9 Example of Raman Spectroscopy Machine: RMP-500 Raman Spectrometer	49
Figure 3.10 Example of CV Workstation: CS series CV electrochemical workstation	50
Figure 4.1 Electrode Slurry of MoS2 and MXene/MoS2 in different weight ratio	52
Figure 4.2 Schematic Drawing of MXene/MoS2 Hybrid Material	53
Figure 4.3 Samples Dried in Drying Oven	53
Figure 4.4 (a)Raman Spectroscopy of MoS2 at 375 & 475°C, (b)Magnified Spectra of 10v	wt%
MXene and post-carbonization, (c) Raman Spectra of MXene & MMX	54
Figure 4.5 XRD patterns of pure MoS2 Electrode	56
Figure 4.6 XRD patterns of 20:60 MXene/MoS2 Hybrid Electrode	57
Figure 4.7 (a) XRD pattern of 30:50 and (b) 40:40 MXene/MoS2 Hybrid Electrode	58
Figure 4.8 (a) FESEM image of MoS2, (b) High Magnification image of MoS2,	
(c) SEM image of Ti ₃ C ₂ T _x , (d) SEM image of Ti ₃ C ₂ T _x obtained using 27.5M	
NaOH under 270°C, (e) SEM image of MoS2/MXene, (f) SEM image of	
MXene/MoS2-0.15	59
Figure 4.9 CV of pure MoS2 Electrode in different scan rates	62
Figure 4.10 CV of 20:60 MXene/MoS2 Hybrid Electrode	64
Figure 4.11 CV of 30:50 MXene/MoS2 Hybrid Electrode	65
Figure 4.12 CV of 40:40 MXene/MoS2 Hybrid Electrode	66
Figure 4.13 GCD of Pure MoS2 Electrode	68

Figure 4.14 GCD curves of 20:60 MXene/MoS2 Hybrid Electrode	69
Figure 4.15 GCD curves of 30:50 MXene/MoS2 Hybrid Electrode	69
Figure 4.16 GCD curves of 40:40 MXene/MoS2 Hybrid Electrode	69
Figure 4.17 GCD curves of 3 Hybrid Electrode in 0.1 Ag ⁻¹	71

LIST OF ABBREVIATIONS

(NH4)2MoS4	-	Ammonium Tetrathiomolybdate
2D	-	Two-Dimensional
AC	-	Activated Carbon
Al	-	Aluminum
ALD	-	Atomic Layer Deposition
CH ₃ CSNH	-	Thioacetamide
CNT	-	Carbon Nanotubes
Co(OH) ₂	-))	Cobalt (II) Hydroxide
COFs		Covalent Organic Frameworks
СР		Conductive Polymer
C_{sp}	-	Specific Capacitance
CV		Cyclic Voltammetry
CVD	-	Chemical Vapor Deposition
DMSO	-	Dimethyl Sulfoxide
EDLC	-	Electrochemical Double Layer Capacitor
EDX	-	Energy Dispersive X-Ray Spectroscopy
EIS	-	Electrochemical Impedance Spectroscopy
ESR	-	Equivalent Series Resistance

FESEM	- Field Emission Scanning Electron Microscopy
GCD	- Galvanostatic Charge-Discharge
GPS	- Global Positioning System
H ₂ O	- Water
H_2S	- Hydrogen Sulfide
H_2SO_4	- Sulfuric Acid
HCl	- Hydrochloric Acid
HF	- Hydrofluoric Acid
KCl	- Potassium Chloride
КОН	- Potassium Hydroxide
LE	- Liquid Exfoliated
MMX	- MoS2/Ti ₃ C ₂ Nanohybrids
Mn ₃ O ₄	- Trimanganese Tetraoxide
Mo	- Molybdenum
MOFs	- Metal Organic Frameworks
MoS2	 UNIVERSITI TEKNIKAL MALAYSIA MELAKA Molybdenum Disulfide
MXene	- Transition Metal Carbides, Nitrides, or Carbonitrides
Na2MoO4	- Sodium Molybdate
Na ₂ SiO ₃	- Sodium Silicate
Na ₂ SO ₄	- Sodium Sulfate
NaNO3	- Sodium Nitrate
NaOH	- Sodium Hydroxide
NF	- Nanofiber

Ni_3S_2	-	Trinickle Disulphide
NMP	5 —	N-methylpyrrolidone
NRs	-	Nanorods
NSs	-	Nanosheets
PAN	-	Polyacrylonitrile
PANI	-	Polyaniline
PVDF	-	Polyvinylidene Fluoride
R _{ct}	-	Charge-Transfer Resistance
R _E	-	Electrolyte Resistance
Rs	-	Intrinsic Resistance
rGO	-	Reduced Graphite Oxide
S	EKNIL	Sulphur
SC	I III	Supercapacitor
SEM	-	Scanning Electron Microscopy
TMDs		اونيوم سيني تتransition Metal Dichateogenides
wt.%	- UI	Weight Ratio Percentage L MALAYSIA MELAKA
XRD	-	X-Ray Diffraction

/

LIST OF SYMBOLS

.

1 .

Wh kg ⁻¹	-	Watt-hour Per Kilogram
Rpm	-	Revolution Per Minute
ml	-	Milliliter
°C	-	Degree Celsius
h	-	Hour
cm	-	Centimeter
М	-	Molar Mass
ml min ⁻¹	-	Milliliter Per Minute
min	- 1	Minutes UG
Fg ⁻¹		Farad Per Gram
ms cm ⁻¹	-	اويور سيتي بيڪنيڪ مليسيا ملاك
μm	-	UNIVERSITI TEKNIKAL MALAYSIA MELAKA
nm	-	Nanometer
mVs ⁻¹	-	Milli-Volt Per Second
mA	-	Milli Ampere
Ag ⁻¹	-	Ampere Per Gram
sec	- 1	Second

xviii

CHAPTER 1

INTRODUCTION

This chapter will be showing on the research background of Synthesis and Characterization of MXene-MoS2 hybrid electrode for supercapacitor application. Besides, it also includes the problem statement of current environment and energy issue, industry demands, supercapacitor electrode material limitation and their various properties. The objectives, scopes of study, significance of study, and organization of report will be shown and lastly followed by a brief summary.

1.1 Background of Study

Supercapacitors (SCs) is an energy storage device which similar usage as normal capacitors. But unlike normal capacitors which supercapacitors uses charging storage mechanism such as electric double layer capacitance (EDLC), pseudocapacitance, or hybrid mechanism to store and release energy. Supercapacitor is also a device that uses low energy density to produce high power density. While compared to normal batteries, supercapacitors have greater charge-discharge cycle life because supercapacitors used physical ions movement instead of chemical reaction like battery does. Generally, supercapacitors internally constructed with 2 electrodes, 2 current collectors for each positive and negative side, and a separator. Supercapacitors application are usually seen in heavy machineries, elevators, trucks and etc. The device also can be used as voltage support for high energy devices such as fuel cell or batteries.

Molybdenum Disulfide (MoS2) is known as the most typical type of Transition Metal Dichalcogenides (TMDCs). This 2D material has a direct band gap of 1.8eV in its monolayer and which its band structure is dependable on the layers as it can help to overcome the gapless

problem of graphene, thus it is important for scientific and industrial area. The generalized formula for TMDCs is MX_2 at which M is the transition metal element (i.e. Ti, Zr, Hf, Mo, and etc.) and X is the chalcogen (i.e. S, Se, or Te). MoS2 is also characterized as a semiconductor and in single film of this material is set up like a sandwich structure in S-Mo-S by covalent bond which interacted and held together by weak Van der Waals force.

For the preparation of MoS2, it is usually by mechanical exfoliation as it can produce better quality of monolayers and it is more favorable in fundamental research, but this method is less appropriate to be use in practical application as it is displayed in low yield and sheet size and the layers are hard to control. Besides, MoS2 can also be prepared by chemical approach which included of ion intercalation and solvent-based exfoliation. Furthermore, Chemical Vapor Deposition (CVD) is a technique which widely used for MoS2 preparation as it can synthesize 2D MoS2 into a wafer-scale that showed high potential to practical application such as largescaled integrated electronics. In addition, the precursors such as Mo based compound powder, deposited molybdenum based film, and MoS2 powder can also be used to prepare MoS2 film.

MXene is recently a new category of 2D materials. This material is formed by early transition metals (TMs) and carbon/nitrogen (C/N). MXene is a 2D structure which derived from MAX phase and its composition is $M_{n+1}AX_n$ (n=1,2,3), where M is an early transition metal (M= Ti, Sr, Cr, Ta and etc), A represented the elements mainly from group IIIA and IVA, and lastly X is either C or N (carbon or nitrogen) but it could also be both. MAX is the structure which inter-growing with packed A-layers and alternatively stacking of MX layers. Using Ti₃AlC₂ (MAX) as an example, by selectively etching of Al on Ti₃AlC₂ in aqueous HF as for us to achieve Ti₃C₂T_x (MXene). The exfoliated carbide or carbonitride nanosheets are then termed as MXene. MXene provides high density, hydrophilic property and also good metallic conductivity. When its 2D layer stacked, more electroactive reaction sites are produced for electrochemical reactions but due to the metal atoms on its surface, oxidation on surface could be easily occurred which is disadvantageous for energy storage application.

2D material such as MoS2 is such promising material because of its short ion diffusion path and absorption site is provided, but restacking of MoS2 sheets showed less efficient in their functional properties. Therefore, composed of MoS2 with another material to form a hybrid could possibly help in solving those problems and acquire the ideal properties. Other than that,