

DETERMINATION OF IONIC CONDUCTIVITY OF POLYVINYL ALCOHOL-BASED GEL POLYMER ELECTROLYTE CONTAINING PLASTICIZER FOR SUPERCAPACITOR APPLICATION

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TAN JUN YU

B051710133

970904-01-5975

FACULTY OF MANUFACTURING ENGINEERING

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DETERMINATION OF IONIC CONDUCTIVITY OF POLYVINYL ALCOHOL-BASED GEL POLYMER ELECTROLYTE CONTAINING PLASTICIZER FOR SUPERCAPACITOR APPLICATION

Sesi Pengajian: 2020/2021 Semester 2

Saya TAN JUN YU (970904-01-5975)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. *Sila tandakan ($\sqrt{}$)

SULIT Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Tan Jun Gu

Alamat Tetap: No. 31 Jalan Gemilang 2/4, Taman Banang Jaya, 83000 Batu Pahat, Johor. Tarikh: 31/8/2021

Disahkan oleh: Cop Rasmi:

Tarikh: <u>13/9/2021</u>

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Determination of ionic conductivity of polyvinyl alcohol-based gel polymer electrolyte containing plasticizer for supercapacitor application"

Approval

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for the Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as

ABSTRAK

Superkapasitor adalah teknologi canggih yang bertindak sebagai mekanisme penyimpanan tenaga yang mengandungi nilai kapasitansi yang lebih disukai ketika dibandingkan dengan kapasitor konvensional. Elektrolit polimer gel (GPE) adalah elemen penting untuk meningkatkan prestasi elektrokimia superkapasitor. Sifat elektrolit polimer gel yang luar biasa telah menarik minat penyelidik untuk mengambil berat tentang topik tersebut. Penyelidikan ini difokuskan untuk menentukan kekonduksian ionik elektrolit polimer gel berasaskan polivinil alkohol (PVA) yang mengandungi pemplastik untuk aplikasi supercapacitor. GPE disediakan dengan menggunakan pelarut, garam KI, PVA dan peratusan berat DEC yang berbeza. Kekonduksian ionik tertinggi yang diperoleh adalah dari 25% DEC dalam PVA GPE dengan nilai 10.99 mS.cm⁻¹. Plasticizer dapat mengubah struktur fizikal polimer untuk menjadikan pengangkutan ion lebih mudah melalui polimer yang membantu dalam peningkatan kekonduksian ion. Elektrod berasaskan rGO AC disediakan dan dicirikan. Nisbah I_D/I_G dari spektroskopi Raman menunjukkan nilai 0.992 yang mewakili kualiti struktur grafit yang baik pada elektrod. XRD elektrod menunjukkan dua puncak dengan ketinggian 26.64° dan 43.43° yang sesuai dengan (002) difraksi karbon anorganik dan (100) difraksi karbon grafit. Superkapasitor dibuat menggunakan elektrod GPE dan rGO dengan menggunakan teknik buburan konvensional. Prestasi elektrokimia supercapacitor diuji dengan Cyclic Voltammetry (CV) dan kapasitansi spesifik tertinggi (Csp) yang diperoleh adalah dari 15% DEC PVA GPE dengan nilai 55.56 Fg⁻¹. GPE kemudian menjalani Galvanostatic charge-discharge (GCD) dan memperoleh 0.16 Fg⁻¹ dari C_{sp}. Perbezaan nilai Csp yang diperoleh dari CV dan GCD disebabkan oleh penurunan kualiti elektrolit dan elektrod. Oleh kerana kekangan masa, kualiti elektrolit dan elektrod yang lebih baik belum disediakan.

ABSTRACT

The supercapacitor is an advanced technology that act as an energy storage mechanism that contain preferable capacitance value when comparing to a conventional capacitor. Gel polymer electrolyte (GPE) is one of the important elements to improve supercapacitor electrochemical performance. The outstanding properties of gel polymer electrolyte when compared to liquid and solid based electrolyte has attracted the interest of researchers to concern about the topic. The research focused to determine the ionic conductivity of polyvinyl alcohol (PVA) based gel polymer electrolytes containing plasticizer for supercapacitor applications. The GPE was prepared by using solvent, KI salt, PVA and different weight percentage of DEC. The highest ionic conductivity obtained was from 25% DEC in PVA GPE with a value of 10.99 mS.cm⁻¹. The plasticizer can amend the physical structure of polymers to make the ions transportation easier through polymer which helps in the improvement of ionic conductivity. The rGO AC-based electrode was prepared and characterized. The I_D/I_G ratio from Raman spectroscopy shown a value of 0.992 which represents the good quality of graphitic structure on the electrode. The XRD of the electrode shown two sharp peaks of the height of 26.64° and 43.43° which corresponds to the (002) diffraction of inorganic carbon and the (100) diffraction of graphitized carbon respectively. The supercapacitor was fabricated using GPE and rGO electrode by using a conventional slurry technique. The supercapacitor electrochemical performance was tested out with Cyclic Voltammetry (CV) and the highest specific capacitance (C_{sp}) obtained is from 15% DEC of PVA GPE with a value of 55.56 Fg⁻¹. The GPE was then undergone Galvanostatic charge-discharge (GCD) and obtained 0.16 Fg^{-1} of C_{sp} . The difference in values of C_{sp} obtained from CV and GCD is due to the degradation of electrolyte and electrode. Due to time constraints, a better quality of electrolyte and electrode are not been prepared.

DEDICATION

To my only

beloved father, Tan Kian Soon

Appreciated mother, Tan Siew Yien

TEKO

adored brother, Tan Jun Qi and all my helpful friends

for giving me so much supports financially, physically, mentally, encouragement, full cooperation and also understandings towards completing a part of this project.

Thank You So Much & Love You All Forever UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENT

I am grateful that there are a lot of people who guide me and give me support regardless of direct or indirectly during the completion of my Final Year Project I.

First of all, I would like to express my deep gratitude to Professor Ir. Dr. Mohd Asyadi 'Azam Bin Mohd Abid, my supervisor for FYP I, for his patient guidance, enthusiasm and encouragement given. My thanks are also extended to Dr. Mohd Fareezuan Bin Abdul Aziz, my superior for FYP I, for his useful critiques, knowledge and willingness to give his time so generously to give me advice.

Furthermore, I would like to express my very great appreciation to my family members and friends for offering help and support during my final year project I. The support given by them helps me to solve difficulties throughout the project.

Last but not least, wish to thank various people for their contribution to help me complete this project and expressing my apology for not mentioning each of you.

TABLE OF CONTENTS

.

ABSTRAK	i
ABSTRACT	iii
DEDICATION	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiv اويوس
UNIVERSITI TEKNIKAL MALAYSIA	MELAKA
CHAPTER 1: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem statement	3
1.3 Objectives	4
1.4 Scopes	5
1.5 Significant of research	6
1.6 Organization of thesis	7
1.7 Summary	8
CHAPTER 2: LITERATURE REVIEW	9
2.1 Supercapacitor	9
2.1.1 Supercapacitor Working Principle	9

	2.1.2 Supercapacitor Advantages and Drawbacks	11
	2.1.3 Supercapacitor Applications	12
2.2	Electrolyte for Supercapacitor	13
	2.2.1 Polymer Electrolytes Classifications	14
	2.2.2 Polyvinyl Alcohol (PVA) based Gel Polymer Electrolyte	16
	2.2.3 Ionic Conductivity of Polyvinyl Alcohol (PVA) based Gel Polymer	17
	Electrolyte	
2.3	Plasticizer for Polymer Electrolyte	18
2.4	Salt for Polymer Electrolyte	19
2.5	Characterization for Gel Polymer Electrolyte and Supercapacitor Electrolyte	20
	2.5.1 Electrochemical Impedance Spectroscopy (EIS)	20
	2.5.2 Scanning Electron Microscopy (SEM)	23
	2.5.3 X-ray Diffraction (XRD)	25
	2.5.4 Raman Spectroscopy	26
2.6	Electrochemical Performance Test	28
	2.6.1 Cycle Voltammetry (CV)	28
	2.6.2 Galvanostatic Charge-Discharge (GCD)	28
	****AINO	
CHA	PTER 3: METHODOLOGY	30
3.1	Project Overview	30
3.2	Materials UNIVERSITI TEKNIKAL MALAYSIA MELAKA	33
3.3	Experimental Method	33
	3.3.1 Preparation of PVA based Gel Polymer Electrolyte with Plasticizer	34
	3.3.2 Preparation of Reduced Graphene Oxide (rGO) Electrode	34
3.4	Characterization Techniques	35
	3.4.1 Electrochemical Impedance Spectroscopy (EIS)	35
	3.4.2 Scanning Electron Microscopy (SEM)	36
	3.4.3 X-ray Diffraction (XRD)	36
	3.4.4 Raman Spectroscopy	37
3.5	Fabrication of Supercapacitor	38
3.6	Electrochemical Performance Test	38
	3.6.1 Cyclic Voltammetry (CV)	39
	3.6.2 Galvanostatic Charge-Discharge (GCD)	39

CHA	APTER 4: RESULTS AND DISCUSSION	40
4.1	Introduction	40
4.2	Electrochemical impedance spectroscopy of PVA based Gel Polymer	40
	Electrolyte with Plasticizer	
4.3	Raman spectroscopy of Reduced Graphene Oxide (rGO) AC based Electrode	47
4.4	Crystal structure and morphology of Reduced Graphene Oxide (rGO) AC based	48
	Electrode	
4.5	Electrochemical performance of supercapacitor	50
	4.5.1 Cyclic voltammetry of PVA-based gel polymer electrolyte supercapacitor	51
	containing DEC plasticizer	
	4.5.1.1 Cyclic voltammetry of PVA-based gel polymer electrolyte	54
	supercapacitor with 0% DEC	
	4.5.1.2 Cyclic voltammetry of PVA-based gel polymer electrolyte	55
	supercapacitor with 5% DEC	
	4.5.1.3 Cyclic voltammetry of PVA-based gel polymer electrolyte	56
	supercapacitor with 10% DEC	
	4.5.1.4 Cyclic voltammetry of PVA-based gel polymer electrolyte	57
	supercapacitor with 15% DEC	
	4.5.1.5 Cyclic voltammetry of PVA-based gel polymer electrolyte	58
	supercapacitor with 20% DEC	
	4.5.1.6 Cyclic voltammetry of PVA-based gela polymer electrolyte	59
	supercapacitor with 25% DEC	
	4.5.2 Galvanostatic Charge Discharge of PVA-based gel polymer electrolyte	60
	containing 15% DEC plasticizer	

4.6 Charge Storage Mechanism of Supercapacitor

63

CHA	PTER 5: CONCLUSION AND RECOMMENDATION	65				
5.1	Conclusion 65					
5.2	Recommendation 66					
5.3	Sustainability 67					
5.4	Complexity of Engineering 67					
5.5	Life-long Learning 68					
REFERENCES 69						

78

78

APPENDICES

A Gantt Chart of FYP I

LIST OF TABLES

2.2	Ionic conductivity of gel polymer electrolytes based on PVA	18
3.1	Composition of PVA based gel polymer electrolyte containing plasticizer	34
	WALAYSIA An	
4.1	Composition of PVA based gel polymer electrolyte containing plasticizer	45
4.2	Ionic conductivity of gel polymer electrolytes based on PVA	46
4.3	Specific capacitance of PVA-based gel polymer electrolyte supercapacitor	54
	with 0% DEC at different scan rates	
4.4	Specific capacitance of PVA-based gel polymer electrolyte supercapacitor	55
	with 5% DEC at different scan rates	
4.5	Specific capacitance of PVA-based gel polymer electrolyte supercapacitor	56
	with 10% DEC at different scan rates	
4.6	Specific capacitance of PVA-based gel polymer electrolyte supercapacitor	57
	with 15% DEC at different scan rates	
4.7	Specific capacitance of PVA-based gel polymer electrolyte supercapacitor	58
	with 20% DEC at different scan rates	
4.8	Specific capacitance of PVA-based gel polymer electrolyte supercapacitor	59
	with 25% DEC at different scan rates	
4.9	Specific Capacitance of of PVA-based gel polymer electrolyte with 15% DEC	62
	for 10 cycles	

LIST OF FIGURES

.

/ .

1.1	Supercapacitor construction	
2.1	Supercapacitor construction	10
2.2	The double layer effect principle (a) Double-layer capacitance (b)	11
	Pseudocapacitance	
2.3	Chemical structure of host polymer: (a) Polyvinyl alcohol (PVA) (b) Chitosan	15
	(CS) (c) Polyvinyl chloride (PVC) and (d) Polyvinylidene fluoride (PVDF)	
2.4	Segmental motion of polymer chain helps in diffusion of cation	20
2.5	EIS measurements configuration of (a) two electrodes (b) three electrode (c)	22
	four electrodes	
2.6	Example of Nyquist plot of non-woven separator and PP separator soaking in	23
	GPE for different time	
2.7	SEM images of a) GO b) rGO	24
2.8	XRD spectra of NiO and PANI/NiO nanocomposites	26
2.9	Raman Spectra of GO and rGO	27
2.10	CV curve of polymer gel electrolytes supercapacitor	28
2.11	GCD curves of PANI/GO nanocomposite electrodes (a) PGO30 (b) PGO50	29
	(c) PGO70	
3.1	Project flow chart	32

3.2	Setup of Electrochemical Impedance Spectroscopy	35
3.3	Scanning Electron Microscope	36
3.4	X-ray diffractometer	37

3.5	Raman Spectrometer	37
3.6	Supercapacitor construction	38
4.1	Impedance plot of PVA-based gel polymer electrolyte with 0% DEC	42

111	impedance plot of FAT based get polymer electrolyte with ow BBC	
4.2	Impedance plot of PVA-based gel polymer electrolyte with 5% DEC	43
4.3	Impedance plot of PVA-based gel polymer electrolyte with 10% DEC	43
4.4	Impedance plot of PVA-based gel polymer electrolyte with 15% DEC	44
4.5	Impedance plot of PVA-based gel polymer electrolyte with 20% DEC	44
4.6	Impedance plot of PVA-based gel polymer electrolyte with 25% DEC	45
4.7	Graph of PVA-based gel polymer electrolyte ionic conductivity versus	46
	weight percentage of DEC	
4.8	Raman spectra of Reduced Graphene Oxide (rGO) AC based Electrode	48
4.9	XRD spectrum of Reduced Graphene Oxide (rGO) AC based Electrode	49
4.10	SEM image of Reduced Graphene Oxide (rGO) AC based Electrode	50
4.11	Cyclic voltammetry of PVA-based gel polymer electrolyte supercapacitor	54
	with 0% DEC	
4.12	Cyclic voltammetry of PVA-based gel polymer electrolyte supercapacitor	55
	with 5% DEC	
4.13	Cyclic voltammetry of PVA-based gel polymer electrolyte supercapacitor	56
	with 10% DEC	
4.14	Cyclic voltammetry of PVA-based gel polymer electrolyte supercapacitor	57
	with 15% DEC	
4.15	Cyclic voltammetry of PVA-based gel polymer electrolyte supercapacitor	58
	with 20% DEC	
4.16	Cyclic voltammetry of PVA-based gel polymer electrolyte supercapacitor	59
	with 25% DEC	
4.17	Graph of PVA-based gel polymer electrolyte with 15% DEC charge	62
	discharge cycle	
4.18	A model of Helmholtz double layer	64

LIST OF ABBREVATIONS

.

SERS	- /	Surface-Enhanced Raman Scattering
CARS	ж.	Coherent anti-Stokes Raman scattering
CE	MALA	Counter electrode
CPEs	- Aller	Composite polymer electrolytes
CV	TT TEA	Cyclic Voltammetry
EC	- SSAINI	Ethylene carbonate
EDLC	بيا ملاك	Electric Double Layer Capacitor
EIS	ŪNIVERS	Electrochemical Impedance Spectroscopy
FT	-	Fourier Transform
GCD	-	Galvanostatic charge-discharge
GPEs	-	Gel polymer electrolytes system
H ₂ O	-	Water
ICDD	-	The International Centre for Diffraction Data
JCPDS	. 	Joint Committee on Powder Diffraction Standards
KI		Potassium iodide
LTS		Linear time-invariant
NE	-	Nernst-Einstein

NiO	-	Nickel oxide
PANI/NiO	æ	Polyaniline-nickel oxide
PC	≂ .	Propylene carbonate
PEG	-	Polyethylene glycol
PEO	-	Polyethylene oxide
PEs	-	Polymer electrolytes
PPEs	1 1.5	Plasticized polymer electrolyte
PTFE	• ,	Polytetrafluoroethylene
PVA	-	Polyvinyl alcohol
RE	- LAY	Reference electrode
rGO	stat. MA	Reduced graphene oxide
RRS	TEKA	Resonant Raman Scattering
RuO ₂	LIGUAR	Ruthenium(IV) oxide
SEM	- Male	Scanning Electron Microscopy
SPEs	-	Solid polymer electrolytes
SUT	UNIVERS	Sample under test
WE	-	Working electrode
WSE	-	Working sensing electrode
XRD	- · · ·	X-Ray Diffraction

× .

LIST OF SYMBOLS

.

%	×		Percent
0	-		Degree
°C	E.	MALA	Degree Celcius
3	8.8	A CONTRACTOR	Dielectric constant of the electrolyte
δ			Distance from the centre of the ion to the electrolyte interface
ΔΕ	8	ANINE KON	Range of cyclic voltammetry operation
θ	-	يا ملاك	اونيوم سيتي تيڪنيخاIncident angle
λ	- U	NIVERS	X-ray wavelength
$\lambda_{incident}$	- 2		Wavelengths (nm) of incident light
$\lambda_{scattered}$	12		Wavelengths (nm) of scattered light
±	-		upper signs refer to forward anodic sweeps
Ŧ	-	e P	lower signs refer to forward cathodic sweeps
С	-		capacitance
C_{sp}	-		Specific capacitance
cm ⁻¹	2		Wavenumber
d	-		Crystal layer spacings
E_{λ}	.C)		Switching potential

			/ .
Ei	121		Starting potential
E_{pb}	-		Backward peak potential
E_{pf}			Forward peak potential
Et			Electrode potential at time, t
i_{pb}	÷		Backward peak current
i _{pf}	-		Forward peak current
Ia	70		Intensities of the armorphous
Ic	2		Intensities of the crystalline
K	-		Boltzmann constant
М	-	ALA	Mass of pseudocapacitor material
n	-	and all the	Integer
n_i	л	TER	Concentration of the free ions contributing to conductivity
q	-	YISBAAMO	Charge
q_i		با ملاك	Charge of the free ions contributing to conductivity
R _b	-	IINIVERS	Bulk resistance obtained from EIS measurement
S	-	UNIVERC	Electrode interface surface area
Т	-		Time
t_{λ}	÷		Time during switching potential
Т	1 22		Absolute temperature in kelvin
V	-		Sweep rate, constant rate of potential change
Xc	-		Crystallinity
Z(jw)	-		Complex impedance

CHAPTER 1

INTRODUCTION

1.0 Research Background

ALAYSI

There is a global issue that is facing by most parts of the world which is energy shortage and the energy used by 80 % of the world is depending on the use of fossil fuels. The overwhelming fossil fuel usage has caused pollution and catastrophe of the environment such as global warming (Sharma & Kumar, 2020). Other environmental pollution such as air, water, and soil has also been a vital issue to the world. Due to the consequence of the environment and decreasing capacity of fossil fuel, green and renewable energy is needed to replace the high demand for fossil fuel usage. There are two popular green energies been discussed to replace fossil fuels which are solar energy and wind energy. But the problem with these energies is their availability during usage. Sun is not always shining bright and the wind is not always blowing. This causes the energy supply is not stable all time. After all, the best way to solve the problem is using the energy storage mechanisms which are batteries and supercapacitors. Batteries and supercapacitors can act as an energy storage mechanism and used when needed (Bello, et.al., 2020).

Among these two technologies, supercapacitors (Figure 1.1) are more preferable for research purposes due to their properties. Supercapacitors have efficient power performance and their cycling stability is long-term comparing to batteries (Bhat, et.al., 2020). The only property that supercapacitor is incomparable with batteries is the capacity of energy content which supercapacitors have tiny energy content compared to batteries. Supercapacitors also

possess electrochemical properties such as efficient charge and discharge rate, great power and energy density that can attract people interest to do research on it, especially from electrochemical specialists. According to Sharma and Kumar (2020), supercapacitors have been categorized into two groups which are Electric Double Layer Capacitor (EDLC) and pseudo-capacitor. For EDLC, there will be no electrochemical reaction in the capacitor and no ionic transport between electrode and electrolyte interface. For pseudo-capacitor, there is an electrochemical reaction takes place which helps to transfer charges between electrode and electrolyte to achieve storage ability. Supercapacitors are building up from electrochemical cell which contains two electrodes with a large surface, electrolytes and porous dielectric.

Alipoori et al. (2019) pointed out that electrolyte plays an important role in determining the performance of supercapacitors. The ionic conductivity and transport properties of the electrolyte will decide the electrochemical performance of the supercapacitor. Examples of electrochemical properties that will be influenced are stability, power density, energy density and electrical conductivity. Most of the research papers are discussing how to improve the ionic conductivity and transport properties since these two properties will help to increase capacitance and energy density. Thus, the performance of supercapacitors will be improved. Among the research papers, polymer electrolytes are the most compatible with supercapacitors since their properties will help increase the movement of ions and energy density (Li, et.al., 2020)

1.2 Problem Statement

The electrolyte is an important element in supercapacitors, the common electrolytes are mainly composed of electrolyte salts and water solvents or organic molecules solvent. The electrolytic solution formed from the combination is in the liquid state under room temperature. Liquid electrolytes often possess excellent electrochemical properties which are high ionic conductivity and electrochemical stability (Bhat, Yadav, & Hashmi, 2020). However, the are some weaknesses of liquid electrolytes such as toxicity. The toxicity can cause serious effects on the lungs, skin, eyes and mucous membranes (Fitrianingsih, et.al., 2013).

Moreover, liquid electrolytes can lead to a serious risk of fire due to flammable characteristics. Accidents with liquid electrolytes catching fire have made the public aware of their flammability hazard. More research about the replacement and improvement of electrolytes are made to prevent accidents. All these drawbacks of liquid electrolyte have become challenges to apply on electronic devices since the possibility of ignition of fire still exist and more aspect need to be considered before using it (Fitrianingsih, et.al., 2013).

Furthermore, solid electrolytes are utilized to replace liquid electrolyte for their ability in getting promising results for electrochemical applications. (Aziz, et.al., 2018). By using solid electrolytes, the problem facing by utilized liquid electrolytes which is a leakage problem will be fixed. However, the disadvantage of using solid electrolytes is the low ionic conductivity and causing low performance if applied on supercapacitors. The reason for low ionic conductivity properties is due to the crystalline phase of solid polymer electrolytes restrict ions movement. (Fitrianingsih, et.al., 2013)

Based on the research above, the application of liquid electrolytes or solid electrolytes cannot solve the problem perfectly. Therefore, this research will focus on gel polymer electrolytes since this type of electrolytes have both advantages from liquid and solid polymer electrolytes which are high conductivity but safe in use.

1.3 Objectives

The objectives are as follows:

3AINN

- To analyze the ionic conductivity of polyvinyl alcohol (PVA) based gel polymer electrolyte containing diethyl carbonate (DEC) plasticizer and potassium iodide salt by using Electrochemical Impedance Spectroscopy.
- To characterize the morphological and structural properties of reduced graphene oxide (rGO) activated carbon-based electrode by using Scanning Electron Microscopy, Raman Spectroscopy, and X-ray Diffraction.
- 3. To investigate the electrochemical performance of reduced graphene oxide activated carbon-based supercapacitor with PVA based gel polymer electrolyte by using Cyclic Voltammetry and Galvanostatic Charge Discharge analysis.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.4 Scopes

. The scopes of research are as follows:

- 1. To achieve objective (1):
 - Prepare PVA based gel polymer electrolytes containing plasticizer with PVA
 5.68 weight percentage (wt%); ethylene carbonate 8.52 wt%; propylene carbonate 11.36 wt%; potassium iodide 11.93 wt%; DEC 0 wt% and the weight percentage of DEC plasticizer will vary from 0 to 25%.
 - Characterize PVA based gel polymer electrolytes containing plasticizer using EIS with a frequency range of 1Hz to 100 kHz.
- 2. To achieve objective (2):

MALAYS !!

- Prepare rGO electrode using conventional slurry technique with rGO 40 wt%; activated carbon 50 wt%; CMC/SBR binder 10wt%.
- Characterize rGO electrode using SEM which operating between 80-120 kV at magnification of 10kx-30kx to see the surface morphology of rGO electrode.
- UNIVERSITI TEKNIKAL MALAYSIA MELAKA
 Characterize rGO electrode using XRD with 2θ in range of 5⁰-55⁰ to check crystal phase and phase composition.
- Characterize rGO electrode using Raman spectroscopy at room temperature and 532nm laser to identify quality of rGO based on G-band and D-band analysis.
- 3. To achieve objective (3):
 - Fabricate supercapacitor with PVA based gel polymer electrolyte and rGO electrode by using a conventional slurry technique.
 - CV test on supercapacitor will be done with range of 10 to 100mVs⁻¹ and potential range of 0 to 1.1 V.