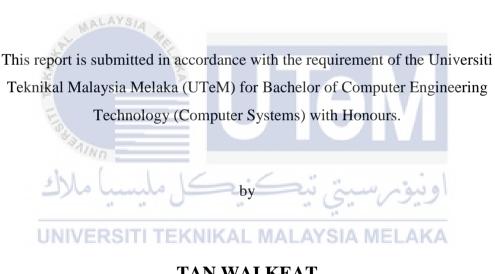
PORTABLE AUTOMATED NUMBER PLATE RECOGNITION (ANPR) SYSTEM WITH DATABASE LABELLING INTERFACE



UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PORTABLE AUTOMATED NUMBER PLATE RECOGNITION (ANPR) SYSTEM WITH DATABASE LABELLING INTERFACE

TAN WAI KEAT B071710637 970223-07-5403

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: PORTABLE AUTOMATED NUMBER PLATE RECOGNITION (ANPR) SYSTEM WITH DATABASE LABELLING INTERFACE

Sesi Pengajian: 2020

Saya TAN WAI KEAT mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- **Sila tandakan (X) 4.

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh TERHAD* organisasi/badan di mana penyelidikan dijalankan.

TIDAK \mathbf{N}

UNIVERSITI TEKNIKAL MALAYSIA MELAK/

Yang benar,

TERHAD

TAN WAI KEAT Alamat Tetap: 1006, Lorong Angsana 16/2, Taman Angsana 09000 Kulim Kedah.

Disahkan oleh penyelia

SHAMSUL FAKHAR BIN ABD GANI

SHAMSUL FAKHAR BIN ABD GANI Penyelaras Program BEEC / Pensyarah Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka

Tarikh: 12/02/2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled PORTABLE AUTOMATED NUMBER PLATE RECOGNITION (ANPR) SYSTEM WITH DATABASE LABELLING INTERFACE is the results of my research except as cited in the references. The thesis has not been accepted for any other degree and is not concurrently submitted in the candidature of any other degree.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as partial fulfillment of the requirements for the degree of Bachelor of Computer Engineering Technology (Computer Systems) with Honours. The supervisory members are as follow,

Signature:	SHAMSUL FAKHAR BIN ABD GANI Penyelaras Program BEEC / Pensyarah Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka
Signature.	······································
Supervisor : S	HAMSUL FAKHAR BIN ABD GANI
Alles	
an .	
مليسيا ملاك	اونيۆم,سيتي تيكنيكل
	and a factor of the second
UNIVERSITI	KNIKAL MALAGA MELAKA
	A A A A A A A A A A A A A A A A A A A
Signature: .	
Co-supervisor: N	NADZRIE BIN MOHAMOOD
	Ts. NADZRIE BIN MOHAMOOD Jurutera Pengajar Kanan Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka

ABSTRAK

Kebelakangan tahun ini, sistem pengenalpastian nombor plat kereta automatik memainkan peranan penting dalam isu sekuriti. Sistem pengenalpastian nombor plat kereta automatik adalah satu sistem yang boleh mengenalpasti number plat kereta secara automatik daripada imej yang ditangkap dari kamera. Disebabkan kebilangan kereta sekarang meningkat banyak, system pengenalpastian nombor plat kereta automatik disyorkan untuk membanteras jenayah, perlindungan sekuriti, ataupun sistem parking. Namun begitu, harga sistem pengenalpastian nombor plat kereta automatik di pasaran sekarang agak mahal. Bukan begitu sahaja, process pemasangan dan yuran penyelenggaraan juga tidak murah. Oleh itu, project ini bertujuan untuk merangkan satu sistem pengenalpastian nombor plat kereta automatik yang mudah alih dan bajet supaya sistem ini boleh dimiliki oleh orang ramai. Projek ini menggunakan Raspberry Pi 4 Model B untuk menggantikan computer traditional yang mahal dan besar. Componen penderia pengerakkan diguna untuk mengesan kereta. Camera juga digunakan untuk menangkap gamber kereta apabila kereta dkesan oleh penderia pengerakkan. Selepas itu, imej yang ditangkap itu akan dijalani beberapa imej proses untuk ekstrak nombor plat dari imej yang ditangkap. Selepas nombor plat kereta diekstrak, maklumat-maklumat akan disimpan dalam pangkalan dalam dan boleh rujuk balik menggunakan antara muka "database labelling".

ABSTRACT

Over the years, an automated number plate recognition system (ANPR) has played a significant role in security issues that arise globally. An automated number plate recognition (ANPR) system is a system that able to recognition number plates from image capture in a computer. As the number of vehicles on road is getting more nowadays, the ANPR system was introduced to help identify vehicles that may help in criminal deterrent, security problems, or parking systems. With the current market, the price of the ANPR system is overpriced. Moreover, the installation of the current ANPR system is complex. The maintenance fee of the ANPR system is also costly. The purpose of this project is to design a low-cost Portable Automated Number Plate (ANPR) system with database labelling interface. In this project, the Raspberry Pi board is used to replaced conventional large-size personal computers as central processing units in the ANPR system. A motion sensor acts as a vehicle detector. Raspberry Pi NoIR Camera can capture a moving vehicle when the motion sensor detects an object moving at a certain distance. Once the image is captured, number plate extraction, number plate segmentation, and number plate recognition will be done by Raspberry Pi. This paper will study and analyse the functionality and efficiency of the method used in the ANPR system The extracted plate number will then be saved into the database and displayed in the userfriendly database labelling interface.

DEDICATION

This thesis is dedicated to my parents and family member who gave me moral support and encouragement during the duration of completing this report. I would also like to dedicate this to my friends and supervisor that always possibly help me when I have trouble with this project.

ACKNOWLEDGEMENTS

I would like to show my deepest gratitude to all the people who gave me support, guidance, and commitment to my project, especially to my supervisor, Mr. Shamsul Fakhar Bin Abd Gani, and co-supervisor, Mr. Nadzrie Bin Mohamood. I felt grateful I managed to complete my project under the supervision of both of my supervisors as they always share their pearls of wisdom with me. Without their help, I would not able to complete my project. Besides, those lectures that taught me would not be left out too. I would like to show my appreciation to them as I gained a lot of knowledge from them in university. These knowledge, skills, and tips are very important for me to complete this project. For sure, I would also like to say thank you to my fellow friends in university who always making suggestions and improvements on my project. Their point of view is always useful for my project. Lastly, I can accomplish my project under blessing and support from parents, elders, and friends.

TABLE OF CONTENTS

		PAGE
DECI	LARATION	III
APPF	ROVAL	IV
DEDI	ICATION	V
ABST	ГКАСТ	VI
ABST	ГКАК	VII
ACK	NOWLEDGEMENTS	VIII
TABI	LE OF CONTENTS	IX
LIST	OF TABLES	XIII
LIST	OF FIGURES	XIV
LIST	OF APPENDICES	XVIII
LIST	OF ABBREVIATIONS اونيوم سيتي تيڪنيڪل مليسيا ملاك	XIX
CHA	PTERMIVER INTRODUCTION_ MALAYSIA MELAKA	1
1.1	Introduction	1
1.2	Problem statement	2
1.3	Objectives	2
1.4	Project scope	2
CHA	PTER 2 LITERATURE REVIEW	4
2.1	Introduction	4
2.2	Literature Review	6

	2.2.1	Automatic License Plate Recognition Using Mobile Device	6
	2.2.2	Automatic Number Plate Recognition System for Vehicle	
		Identification Using Optical Character Recognition	8
	2.2.3	Automatic License Plate Recognition (ALPR) using OpenCV	10
	2.2.4	Automatic Car-plate Detection and Recognition System	11
	2.2.5	Blob Extraction based Character Segmentation Method for	
		Automatic License Plate Recognition System	12
	2.2.6	Automatic Number Plate Recognition	13
	2.2.7	Detection and Recognition of Multiple License Plate from	
	hł.	Still Images	14
	2.2.8	Artificial neural networks based vehicle license plate recognition	15
	2.2.9	Malaysian Automatic Number Plate Recognition System using	
	FISTA	Pearson Correlation	16
	2.2.10	Development of portable automatic number plate recognition	
	ملاك	(ANPR) system on Raspberry Pi	17
2.3	Comparis	on Between Automated Number Plate Recognition (ANPR)	
	System		19
2.4	Raspberr	y Pi 4 Model B	27
2.5	Raspberr	y Pi Camera NoIR Module	28
CHAP	FER 3	METHODOLOGY	29
3.1	Introduct	ion	29
3.2	Overview	v of Project Methodology	29
3.3	Hardware	e Implementation	31

	3.3.1	Raspberry	Pi 4 Model B	31
	3.3.2	Raspberry	Pi Camera NoIR Module	33
	3.3.3	HC-SR501	PIR Sensor	34
3.4	Software	Implementa	tion	35
	3.4.1	OpenCV L	ibraries	35
		3.4.1.1	Colour Conversion	35
		3.4.1.2	Bilateral Filter	36
		3.4.1.3	Canny Edge Detection	37
		3.4.1.4	Contour	37
	H	3.4.1.5	Threshold	38
	A. A	3.4.1.6	Contour	39
	TEK	3.4.1.7	Convolutional Neural Network	39
	3.4.2	Python Pro	gramming Language	40
	3.4.3	MySQL		40
3.5	Circuit D	Diagram	اويونر سيتي نيڪنيڪل	41
3.6	Operation	nal Flow	EKNIKAL MALAYSIA MELAKA	43
3.7	Prelimina	ary Results		45
CHAP	FER 4	RESUL	T AND DISCUSSION	46
4.1	Introduct	tion		46
4.2	Hardwar	e Implement	ation	46
4.3	Software	Implementa	tion	48
	4.3.1	Deep Leari	ning Model	48

4.3.2 Image Acquisition 53

	4.3.3	Image Processing of Number Plate Extraction	54
	4.3.4	Image Processing of Character Segmentation	60
	4.3.5	Optical Character Recognition Using CNN Model	62
	4.3.6	Database Labelling Interface	66
4.4	Result A	analysis	72
	4.4.1	PIR Sensor	72
	4.4.2	Number Plate Localisation	75
	4.4.3	OCR Accuracy	77
	4.4.4	Comparison Between Keras and TensorFlow Lite Model	84
4.5	Discussi	On AYSIA	86
4.6	Project I	Limitation	88
CHAP	FER 5	CONCLUSION AND RECOMMENDATION	89
5.1	Introduc	tion	89
5.2	Conclus	اويىۋىرسىيتى بېكىنىكل مليسىيا _ق	89
5.3	Recomm	iendation TEKNIKAL MALAYSIA MELAKA	90
5.4	Project I	Potential	91
REFE	RENCES		92
APPEN	DICES		94

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.3.1	Comparison Between Number Plate Detection/Extraction	19
Table 2.3.2	Comparison Between Number Plate Segmentation	21
Table 2.3.3	Comparison Between Number Plate Recognition	22
Table 2.3.4	Comparison Between Hardware/Software Used	25
Table 4.4.1.1	Percentage of Acquire an Image of Vehicle with Number Plate	72
Table 4.4.3.1	Percentage of Accuracy of OCR for Model A	77
Table 4.4.3.2	Percentage of Accuracy of OCR for Model B	78
Table 4.4.3.3	Percentage of Accuracy of OCR for Model C	79
Table 4.4.3.7	Recognition Error from Model	83
	alwo	
الح	اونيۈم سيتي تيكنيكل مليسيا ملا	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.2.1.1	Candidates from contours method	6
Figure 2.2.1.2	Candidates of Character Contour Method	7
Figure 2.2.1.3	Kohonen Self-Organizing Maps	7
Figure 2.2.2.1	Colour Searching Method in Number Plate Extraction	8
Figure 2.2.2.2	Row and Columns Segmentation Methods	9
Figure 2.2.3.1	Segmented area in Haar-like features	10
Figure 2.2.3.2	Edge detection in a binary image	11
Figure 2.2.4.1	Number Plate Extraction Using Colour Contrast Method	12
Figure 2.2.5.1	Blob Analysis Extraction	13
Figure 2.2.6.1	Sample of Template	14
Figure 2.2.7.1	Support Vector Machine (SVM) algorithm sample	15
Figure 2.2.8.1	Overview of Artificial neural networks (ANN) ELAKA	16
Figure 2.2.9.1	Formula of Pearson Correlation and Scatterplots	17
Figure 2.2.10.1	Classification of New Data Point	18
Figure 2.4.1	Raspberry Pi Model	27
Figure 2.5.1	Raspberry Pi Camera NoIR Module	28
Figure 3.2.1	General flow chart of Project Methodology	29
Figure 3.3.1.1	Raspberry Pi 4 Model B	31
Figure 3.3.1.2	Raspberry Pi 4 Model B GPIO pins diagram	32
Figure 3.3.2.1	Raspberry Pi Camera NoIR Module	33

Figure 3.3.3.1	HC-SR501 PIR Sensor Model	34
Figure 3.4.1.1.1	Sample of Image Before and After Grayscale Conversion	36
Figure 3.4.1.2.1	Sample of Image Before and After Bilateral Filter	36
Figure 3.4.1.3.1	Sample of Image Before and After Canny Edge Detection	37
Figure 3.5.1.4.1	Sample of Image Before and After Contour with Cropped Area	38
Figure 3.4.1.5.1	Sample of Image Before and After Thresholding	38
Figure 3.5.1.6.1	Sample of Image Before and After Contour Finding	39
Figure 3.4.1.8	Convolutional Neural Network Architecture	40
Figure 3.6.1	Circuit Diagram of ANPR system	41
Figure 3.6.2	Block diagram of ANPR System	42
Figure 3.7.1	Flowchart of the operation of the ANPR system	43
Figure 4.2.1	Internal View	46
Figure 4.2.2	Front View	47
Figure 4.2.3	Side View	47
Figure 4.3.1.1	Summary of CNN Model	49
Figure 4.3.1.2	Classes in Dataset NKAL MALAYSIA MELAKA	49
Figure 4.3.1.3	Samples in Class	50
Figure 4.3.1.4	Summary of Training Process for Model A (6400 samples)	50
Figure 4.3.1.5	Summary of Training Process for Model B (12800 samples)	51
Figure 4.3.1.6	Summary of Training Process for Model C (25600 samples)	51
Figure 4.3.1.7	Accuracy of Valid and Train Datasets for Each Epoch in Model A	51
Figure 4.3.1.8	Accuracy of Valid and Train Datasets for Each Epoch in Model B	51
Figure 4.3.1.9	Accuracy of Valid and Train Datasets for Each Epoch in Model C	51
Figure 4.3.2.1	Message in Terminal During Image Acquisition Process	53

Figure 4.3.2.2	File Directory Where the Image Saved	54
Figure 4.3.3.1	Original Image	55
Figure 4.3.3.2	Grayscale Conversion	55
Figure 4.3.3.3	Bilateral Filter	56
Figure 4.3.3.4	Canny Edge Detection	56
Figure 4.3.3.5	Image with Labelled Number Plate Area	57
Figure 4.3.3.6	Cropped Number Plate Area	57
Figure 4.3.3.7	Sample of Failed Labelled Number Plate Area	58
Figure 4.3.3.8	Sample of Failed Labelled Number Plate Area	59
Figure 4.3.3.9	Sample of Failed Labelled Number Plate Area	59
Figure 4.3.3.10	Sample of Failed Labelled Number Plate Area	60
Figure 4.3.4.1	Character Segmentation Process	61
Figure 4.3.4.2	Sample of Failed Character Segmentation	61
Figure 4.3.5.1	OCR Result from Model A (6400 Samples)	62
Figure 4.3.5.2	OCR Result from Model B (12800 Samples)	62
Figure 4.3.5.3	OCR Result from Model C (25600 Samples) MELAKA	63
Figure 4.3.5.4	OCR Result of Standard Number Plate Font	64
Figure 4.3.5.5	OCR Result of Special Font I	64
Figure 4.3.5.6	OCR Result of Special Font II	65
Figure 4.3.5.7	OCR Result of Special Font III	65
Figure 4.3.6.1	Login Interface	66
Figure 4.3.6.2	Database Interface	67
Figure 4.3.6.3	View the Entire Data in Database	67
Figure 4.3.6.4	Search Data by Date	68

Figure 4.3.6.5	Search Data by Location	68
Figure 4.3.6.6	Search Data by Number Plate	68
Figure 4.3.6.7	View Image of Data by Entering the ID	69
Figure 4.3.6.8	Export Data in Current Table to CSV	69
Figure 4.3.6.9	Data Inside CSV	70
Figure 4.3.6.10	Database in PhpMyAdmin	71
Figure 4.3.6.11	Structure of Table	71
Figure 4.4.1.2	Sample of Failed Image Captured in Range of 1 Meter with 0 °PIR Sensor Placement	73
Figure 4.4.1.3 with 0 °PIR Ser	Sample of Success Image Captured in Range of 3 Meter	73
with 45 °PIR Se Figure 4.4.1.5	Sample of Success Image Captured in Range of 3 Meter ensor Placement Sample of Failed Image Captured in Range of 1 Meter	74
with 0 °PIR Ser		74
Figure 4.4.2.1	Sample of Constraint 1	75
Figure 4.4.2.2	Sample of Constraint 2	76
Figure 4.4.3.4	Graph Analysis of Percentage of Accuracy of OCR for Model A	80
Figure 4.4.3.5	Graph Analysis of Percentage of Accuracy of OCR for Model B	80
Figure 4.4.3.6	Graph Analysis of Percentage of Accuracy of OCR for Model C	81
Figure 4.4.3.7	Graph Analysis of Percentage of Accuracy of OCR for All Model	81
Figure 4.4.4.1	Runtime of Program by Using Keras Model	84
Figure 4.4.4.2	Runtime of Program by Using TensorFlow Lite Model	85
Figure 4.4.4.2	Comparison Between Keras and Tensorflow Lite Model	85

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Gantt Chart of the project	93
Main Program Code	94
Coding for Training CNN Model by Using Keras	98
Coding for Database Login GUI	101
Coding for Database GUI UTERN JOINTON	105
	Main Program Code Coding for Training CNN Model by Using Keras Coding for Database Login GUI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATIONS

- Automated License Plate Recognition ANN Artificial Neural Network ANPR Automated Number Plate Recognition **CCTV** Closed-circuit Television CNN **Convolutional Neural Network** CPU **Central Processing Unit** Camera Serial Interface CSI **FGPA** Field-programmable Gate Array **GPIO** General Purpose Input/Output GPS **Global Positioning System** KNN K-nearest Neighbour Multilayer Perceptron MLP
 - No Infrared NALAYSIA MELAKA NoIR
- OCR **Optical Character Recognition**
- **OpenCV** Open Source Computer Vision Library
 - PIR **Passive Infrared**

ALPR

SVM Support Vector Machine

CHAPTER 1

INTRODUCTION

1.1 Introduction

Wisconsin (1941) stated that a legally registered vehicle will have a registration plate, also called a license plate or number plate. A registration plate is a plastic plate with a unique ID attached at the front and rear part of a vehicle. This may differ from countries and types of vehicles according to the law set by the countries. According to Boerwald et al. (2005), the unique ID on the registration plate is made up of a combination of alphanumeric and numeric ID which is used as a vehicle identifier. Information such as ownership of the vehicle, type of vehicle, the colour of the vehicle is recorded under the registration plate. In short, the registration plate act as a unique identifying tag of the vehicle which can be traced when needed. Over the years, the registration plate has a significant role in security issues that arise globally. CCTV is installed on the roadside or at the entrances of the location to trace the vehicle. Andrzej Dziech et al. (2013) stated that the problem arises when someone has to review back the CCTV frame to frame to identify certain registration plates. Soon, the registration plate recognition system called Automated Number Plate Recognition (ANPR) was developed to reduce the burden. According to Du et al. (2013), Automated Number Plate Recognition (ANPR) is a system using a computer with a camera that is used to capture the registration plate of the vehicle then being processed to extract the unique ID on the registration plate. Once the information is being extracted successfully, it will be saved in the computer with several pieces of information such as date and time, location, etc. Ozbay & Ercelebi, (2005) stated

that the existing Automated Number Plate Recognition (ANPR) System is facing several issues such as high cost, complex installation, and high maintenance fees. The purpose of my project is to develop a low-cost Automated Number Plate Recognition (ANPR) System with database labelling.

1.2 Problem statement

Automated Number Plate Recognition (ANPR) System is now widely required in various fields such as traffic departments, security companies, parking system, auto-pay system, etc. There are still a lot of fields using a video camera or closed-circuit television (CCTV) to record the incoming vehicles. Manually checking images or videos and matching the license plates with registered vehicles are time-consuming. The existing Automated Number Plate Recognition (ANPR) System is high in cost as it required a high-resolution camera and a good performance computer. Moreover, the installation of an Automated Number Plate Recognition (ANPR) System is complex and maintenance cost is high.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.3 Objectives

The main objectives of this project are:

- 1. To develop and study the method used in a Portable Automated Number Plate Recognition (ANPR) System with database labelling interface.
- 2. To analyse the functionality and reliability of the system in detecting the number plate and recognising characters.

1.4 **Project scope**

- Use Raspberry Pi 4 Model B as a computer
- Use a camera and sensor to capture the image of a vehicle
- Designed to recognize unique ID on the number plate
- The result will be saved in a database with a database labelling interface
- The database is a local server database
- Exterior design is not covered

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

According to Du et al. (2013), the Portable Automated Number Plate Recognition (ANPR) System is mainly a real-time system used to automatically detect and recognize number plates from the captured image by using image processing techniques. This system is now widely used globally as the number of vehicles increase day by day. According to Peter Joyce (2010), his system was firstly invented by the Police Scientific Development Branch in Britain in 1976. The main purpose of this system during those days was to help in a criminal deterrent. However, nowadays ANPR is widely used for several purposes such as electronic payment systems, smart parking systems, garden-surveillance systems, etc.

A Portable Automated Number Plate Recognition (ANPR) System is mainly divided into five main stages which are image acquisition, number plate detection/extraction, number plate segmentation, number plate recognition, and database labelling. Image acquisition is a procedure to obtain an image with a possible existence of a number plate. Number plate detection/extraction is mainly a stage to detect a number plate region on a captured image. Number plate segmentation is a procedure to segment each character on the number plate into several sub-image. Number plate recognition is a procedure to recognize the character in the sub-images segmented on the previous procedure. Database labelling is a procedure to collect data extracted by the system and label them with little extra information such as date and time and GPS coordinates.