

BACHELOR OF COMPUTER ENGINEERING TECHNOLOGY (COMPUTER SYSTEMS) WITH HONOURS.

2020

Faculty of Electrical Engineering And Electronic Engineering

Bachelor of Computer Engineering Technology(Computer Systems) with Honours.

2020

DEVELOPMENT OF IOT BASED SMART PARKING SYSTEM BY USING ARDUINO

ONG WENG SUNG

This thesis is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Computer Engineering Technology (Computer Systems) with Honours.

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF IOT BASED SMART PARKING SYSTEM BY USING ARDUINO

Sesi Pengajian: 2020/2021

Saya **ONG WENG SUNG** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD* Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK TERHAD

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Yang benar,

ONG WENG SUNG Alamat Tetap: NO 392 KAMPUNG BARU SIMPANG JALONG 31100 SG SIPUT (U) PERAK. Disahkan oleh penyelia:

TS ZAHARI TS. ZAHARIAH BINTI MANAP Teknologi Kejuruteraan El Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka

Cop Rasmi Penyelia

Tarikh:14/02/2021

Tarikh:17-Feb-2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini.

DECLARATION

I hereby, declared this report entitled Development of IoT Based Smart Parking System by Using Arduino is the results of my own project except as cited in references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

HALAYSIA MELER	
Signature: Author: ONG WENG SUNG	
بني تيڪني14/2/2021 مليسيا • ڪ	اونيۇم س
UNIVERSITI TEKNIKAL MALAYSIA	MELAKA

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Computer Engineering Technology (Computer Systems) with Honours. The member of the supervisory is as follow:

DEDICATION

To my beloved parents.

ABSTRACT

Nowadays, cars are the most used transportation in most of the countries all over the world. The number of cars increases rapidly leading to the increased demand for expanding the parking spaces especially in the cities and urban areas. As the traffic in urban areas is becoming heavier every day, the drivers tend to double park because they won't take the risk of going elsewhere to park their car just because they have no idea of what awaits them in other parking areas. This leads to the need of an efficient smart parking system. In this project, a smart parking system is developed to provide an efficient parking space utilization using Internet of Things (IoT) technology. The developed system consists of two main components which are an on-site device and mobile application. The on-site device updates the information about parking availability and its location in a cloud server. The data can be accessed by the user through a mobile application. This system informs the user the nearest parking area and gives the availability of parking slots in that respective area. The accuracy for the IoT based Smart Parking System is analysed through a series of real time testing. By comparing the actual condition of the on-site device and the result shown in the Blynk mobile application, the percentage of accuracy of IoT based Smart Parking System is 100%. All of the actual results of the on-site device are synchronized with the result in Blynk mobile application. The speed of the refresh rate is about 1.5s and the speed can also be affected by the upload speed of the Wi-Fi network connected. The results showed that the average time response increased by 1s when every estimated 5m further from the router.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Pada masa ini, kereta adalah pengangkutan yang paling banyak digunakan di kebanyakan negara di seluruh dunia. Bilangan penggunaan kereta meningkat dengan cepat menyebabkan permintaan meningkat untuk memperluas ruang parkir terutama di bandar dan kawasan bandar. Disebabkan trafik di kawasan bandar semakin tinggi, pemandu cenderung untuk memarkir bertindan kerana mereka tidak akan mengambil risiko untuk pergi ke tempat lain untuk memarkir kereta mereka kerana mereka tidak mempunyai maklumat tentang kesediaan parkir di kawasan memarkir lain. Disebabkan keadaan itu, sistem parkir yang cerdas yang efektif diperlukan. Dalam projek ini, sistem parkir yang cerdas akan dibangunkan untuk menyediakan penggunaan ruang parkir yang efektif menggunakan teknologi IoT. Sistem yang dibangunkan terdiri daripada dua komponen utama yang merupakan peranti di lapangan dan aplikasi bergerak. Peranti akan kemaskini maklumat tentang kesediaan letak kereta dan lokasinya dalam pelayan awan. Kemudian, data boleh dicapai oleh pengguna melalui aplikasi bimbit. Sistem ini boleh maklumkan pengguna untuk mencari kawasan letak kereta terdekat dan memberikan kesediaan slot letak kereta di kawasan masing-masing itu. Jadi sistem ini membantu mengurangi masa untuk mencari tempat letak kereta dan menyelesaikan masalah letak kereta untuk bandar. Ketepatan untuk IoT berdasarkan Sistem Parkir Pintar dianalisis melalui satu siri ujian masa sebenar.Dengan membandingkan keadaan sebenar peranti di lokasi dan keputusan yang dipaparkan dalam aplikasi bimbit Blynk, peratus keperluan Sistem Parkir Pintar berasaskan IoT adalah 100%.Semua keputusan sebenar peranti di lokasi disegerakkan dengan keputusan dalam aplikasi bimbit Blynk.Kelajuan kadar segar adalah kira-kira 1.5 saat dan kelajuan juga boleh dipengaruhi oleh kelajuan muat naik rangkaian Wi-Fi tersambung.Hasil menunjukkan bahawa tanggapan masa rata-rata meningkat dengan 1 saat apabila setiap kiraan 5 m lebih jauh dari penghala.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to all the outstanding people who have provided continuous support, guidance, experience, understanding and commitment to my successful project. In addition, I would like to express my heartfelt thanks to my supervisor, Mrs Ts. Zahariah Binti Manap for her support, suggestions and encouragement, and for helping me in completing the implementation and documentation of this project. I would like to thank every lecturer who has taught me, especially those who have given me all the knowledge, skills and tips for my project. These knowledge, skills and tips are very important for me to complete this project. In addition, I would like to thank all my friends of BEEA, BEET and BEEC in particular for providing me with transportation and making suggestions and improvements on my project. I really appreciate their guidance and cooperation. It is blessings and gracious encouragement of my parents, respected elders and my supporting colleagues that make me able to accomplish this project.

TABLE OF CONTENTS

DECLA	RATION		
APPRO	VAL		
DEDIC	ATION		
ABSTR	ACT		
ABSTR	AK		
ACKN	JWLEDG	EMENTS	III
TABLE	OF CON	TENTS	
LISTO	F TABLE		
LISTO	F FIGUR	ES DIGEG	
LISTO	F APPEN	DICES	
LISTO	F SYMBC	JLS NULL THONG	
LISTO	F ABBRE	ZVIATIONS	XI
		MALAYSIA	
СНАРТ	TER 1 🔗	INTRODUCTION	1
1.1	Introducti	on 🎽	1
1.2	Problem s	statement	2
1.3	Objective	s	3
1.4	Scope of t	the project	3
1.5	Project sig	gnificance	4
1.6	Thesis org	ganization	5
	In all		
CHAPI	ER 2	LITERATURE REVIEW	6
2.0	Introducti	on	6
2.1	Overview	of smart parking system	0
2.2	Processing	g device of 101 based smart parking system	10
	2.2.1	Arduino Mega 2500	10
	2.2.2	Arauno UNO	11
2.2	2.2.3	Kaspberry Pi	12
2.3	Sensor in	Introcenie concer	13
	2.3.1	Ultrasonic sensor	14
2.4	2.3.2	Infrared sensor	15
2.4	wireless c	Zia Data	15
	2.4.1		10
	2.4.2	KFID Dhuata ath	18
	2.4.3	Bluetooth	19
2.5	2.4.4 Transasir	WI-FI	21
2.3	1 ransceiv	ESD8266 With Et Module	23
	2.3.1	EST 6200 W1-F1 MOdule	23
26	2.3.2	HC-00 Bluetooth module	24
∠.0	101 platfo	ThingSpeels	24
	∠.0.1	тппдъреак	25

	2.6.2	Blynk	25
	2.6.3	Google Cloud	26
2.7	Summary		27
	2		
CHAP	FER 3	METHODOLOGY	29
3.1	Introduct	ion	29
3.2	Project or	verview	29
3.3	System design		
3.4	3.4 Hardware development		
	3.4.1	Arduino Uno	35
	3.4.2	ESP8266 Wi-Fi Module	37
	3.4.3	Infrared sensor	38
	3.4.4	Servomotor	40
3.5	Software	implementation	41
CHAPT	FER 4	RESULT AND ANALYSIS	43
4.1	Introduct	ion	43
4.2	Experime	ent setup	43
4.3	Result analysis ⁴ ⁽³⁾ 4		
4.4	Summary		57
	3		
CHAPT	TER 5	CONCLUSION AND RECOMMENDATION	58
5.1	Introduct	ion	58
5.2	Conclusio	on	58
5.3	Recomm	endation	59
	5.3.1	Transceiver module	59
	5.3.2	Processing Device/Microcontroller	60
	5.3.3	Sensor much Construction of the sensor	60
REFEN	RECES	VERSITI TEKNIKAL MALAYSIA MELAKA	61
	-		
APPEN	DIX		66

LIST OF TABLES

TABLE TITLE

Table 2.1	Comparison between the processing device	8
Table 2.2	Comparison between Ultrasonic Sensor and Infrared Sensor	9
Table 2.3	Comparison between ZigBee, RFID, Bluetooth, and Wi-Fi	9
Table 2.4	Advantage and Disadvantages of ThingSpeak	25
Table 2.5	Advantages and Disadvantages of Blynk	26
Table 2.6	Pros and Cons of Google Cloud	26
Table 2.7	Comparison between articles based on the processing device, see	ensor, and
	technologies used in the smart parking system	27
Table 4.1	Comparison of the actual result and the result in the Blynk mot	oile
	application	49
Table 4.2	Comparison between distance and average time	55

LIST OF FIGURES

FIGURE TITLE

Figure 2.1	Image of Arduino Mega 2560	11
Figure 2.2	Arduino Uno Board Image	12
Figure 2.3	Image of Raspberry Pi Board	13
Figure 2.4	Image of Ultrasonic Sensor	14
Figure 2.5	ZigBee architecture	16
Figure 2.6	RFID architecture	18
Figure 2.7	Architecture of Smart Parking System Using Bluetooth	20
Figure 2.8	Architecture of Wi-Fi technology in Parking System	22
Figure 2.9	ESP-01 Wi-Fi Module	23
Figure 2.10	HC-06 Bluetooth module	24
Figure 3.1	General Flow Chart for the project	30
Figure 3.2	Block diagram of the development of IoT based smart parking s	system by
	using Arduino	32
Figure 3.3	Connection of servo motor and infrared sensor with Arduino	34
	module	
Figure 3.4	Pinout of Arduino Uno	36
Figure 3.5	ESP8266 pinout	37

Figure 3.6	Infrared sensor	39
Figure 3.7	Micro Servomotor 4	
Figure 3.8	Flowchart based on how the smart parking system application	42
	works	
Figure 4.1	On-site device of the Smart Parking System	44
Figure 4.2	Information and Map on the Blynk App	44
Figure 4.3	Serial Monitor tool of Arduino IDE 4	
Figure 4.4	Connection between on-site device and the Blynk app 46	
Figure 4.5	The developed smart parking Apps: (a)Device selector, (b)LCD	46
	screen, (c)Marker on Google Map	
Figure 4.6	(a): Apps display when none of the parking slots occupied,(b): Apps display showing the number of vacant after one slot	47
	is occupied	
Figure 4.7	Transceiver Sending Data to ThingSpeak	48
Figure 4.8	Number of vacant slot at FTK parking area	54
Figure 4.9	Number of vacant slot at Hotel MITC parking area	54
Figure 4.10	Number of vacant slot at Mydin MITC parking area	54
Figure 4.11	Time response for the IoT based Smart Parking System	55

LIST OF APPENDICES

Appendix TITLE

Appendix 1	Grantt Chart Of The Project		
Appendix 2	Coding For Blynk IoT Platform		
Appendix 3	Coding For ThingSpeak IoT Platform	70	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA		

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

Direct Current LINI ΔΚΔ

LGPL	Lesser General Public License
GPL	General Public License
SoC	System-On-chip
MAC	Medium Access Control
РНҮ	Physical Layer
PAN-ID	Personal Area Network
GSM	Global System for Mobile
	Communication

CHAPTER 1

INTRODUCTION

1.1 Introduction

The basic technique for finding a parking spot at most parking spaces is manual through luck and experience. This method involves resources and time, and if the driver in a high vehicle density city is searching for a parking spot, the worst case is that they will not find any parking spaces. To overcome the problem and enhance the parking management system, the Internet of Things technology has changed both in life and smart parking systems in various fields. Developing a smart parking network includes the introduction and application of wireless networking technologies such as ZigBee, Radio Frequency Identification (RFID), Wi-Fi, Bluetooth, and others into the SPS. All of these have their advantages and drawbacks for the smart car parking system. Apart from this, other types of sensors and processing systems are added to the PLC to detect the car's presence. The implemented processing unit has a close partnership with SPS wireless communication technologies. Each of the technologies has its particular method for it to work properly.

The goal of this project is to create an IoT based application for a smart parking system by using Arduino. Wi-Fi wireless communication technology is chosen because it can easily save cable costs and internet access anywhere. The proposed system assists a user in knowing parking spaces are available. The parking systems are designed to provide users with facilities such as finding, allocating and reserving the 'best' car park available to a user in a given area, providing navigation instructions to reach this lot. Such systems require the deployment of efficient sensors in the parking areas for occupancy monitoring as well as quick data processing units to gain practical insights from data collected from different sources.

1.2 Problem Statement

Nowadays, it is becoming more difficult to find a parking space because of the increase in automation production. Car users spend a lot of time trying to find where to park in the parking garage. Drivers rarely have time to waste in parking garages searching for spaces to park in the constantly busy working world of today. Parking problems in every major city are getting serious and growing at an alarming rate. To solve this issue, a smart parking infrastructure is being built to handle the task using the latest technologies. However, most of the existing smart parking implementations only provide on-site information about parking availability. For example, a smart parking system at a shopping mall displays the number of available parking slots at the parking entrance. Currently, the integration of a smart parking system with IoT devices is still a new area to venture into. This approach is predicted to provide a far convenient way of parking searching especially in high population cities.

This project aims to build an IoT-based smart parking system that saves driver time and achieves an accessible and user-friendly system. This is for promoting traffic movement inside the car park. The primary purpose of this is to develop a mobile application that will allow users to check the availability of parking within their area. A model of parking system is designed to illustrate the parking function, and consumers can use the mobile application to check parking slots availability near the facility.

1.3 Objectives

This project aims to develop an IoT-based smart parking system that can be accessed through a mobile application. There are three objectives as listed below;

- 1. To develop an on-site device for a smart parking system by using Arduino.
- 2. To create a smart parking mobile application that can interact with the on-site smart parking device.
- 3. To evaluate the performance of the developed system.

1.4 Scope of the project TEKNIKAL MALAYSIA MELAKA

My project's scope is to develop a mobile application that can access the on-site device that had installed in the Smart Parking System.

My project will separate into two parts which are the development of an onsite device for smart parking systems and implementation of smart parking mobile applications. In the smart parking system, each of the parking slot is detected and the data is sent to the Arduino to be processed. The data is uploaded to the Blynk cloud via Wi-Fi. In order to interact with the on-site smart parking device, the mobile application is developed on the Blynk IoT platform and serves as an interface for communication with the device by