

# DEVELOPMENT OF IOT BASED EMERGENCY VEHICLE ALERT SYSTEM USING NODEMCU



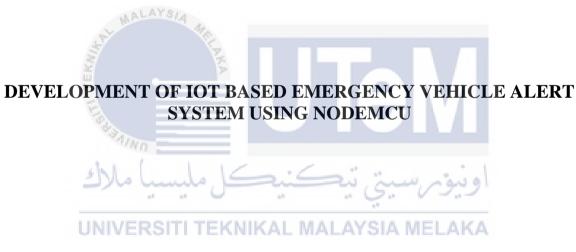
# BACHELOR OF COMPUTER ENGINEERING TECHNOLOGY (COMPUTER SYSTEM) WITH HONOURS



ABDUL MUIZ BIN HAMIRUDIN

**BACHELOR OF COMPUTER ENG. TECH. (COMPUTER SYSTEMS)** 

2020


# DEVELOPMENT OF IOT BASED EMERGENCY VEHICLE ALERT SYSTEM USING NODEMCU



# BACHELOR OF COMPUTER ENGINEERING TECHNOLOGY (COMPUTER SYSTEM) WITH HONOURS



# Faculty of Electrical and Electronic Engineering Technology



Abdul Muiz Bin Hamirudin

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

## DEVELOPMENT OF IOT BASED EMERGENCY VEHICLE ALERT SYSTEM USING NODEMCU

### ABDUL MUIZ BIN HAMIRUDIN



Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA



# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF IOT BASED EMERGENCY VEHICLE ALERT SYSTEM USING NODEMCU

Sesi Pengajian: 2020

Saya **ABDUL MUIZ BIN HAMIRUDIN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan (X)

SULIT\*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.



TERHAD\*

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.



TIDAK

TERHAD

Yang benar,

Disahkan oleh penyelia:

ABDUL MUIZ BIN HAMIRUDIN DR. F

Alamat Tetap:

NO 29, JALAN SD 2/19,

TAMAN SERI DUYONG 2,

ALAYS

75460 MELAKA.

Tarikh: 08/02/2021

DR. FARA ASHIKIN BINTI ALI

Cop Rasmi Penyelia

Tarikh: 11/02/2021



\*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

## DECLARATION

I declare that this project entitled "Development of IoT Based Emergency Vehicle Alert System using NodeMCU" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.



## APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer Engineering Technology (Computer System) with Honours.

| Signature :                                  |  |
|----------------------------------------------|--|
| Supervisor Name : Dr. Fara Ashikin Binti Ali |  |
| Date Th/02/2021                              |  |

## **DEDICATION**

## To my beloved parents and family

Thank you for providing all the encouragement you have never given up.

## To my supervisor and lecturer

Thank you for all your untiring guidance and assist. Your patience, support and words of

encouragement gave me great strength to accomplish this project.



#### ABSTRACT

Emergency vehicles such as police car, fire truck and ambulance need to arrive to their destination quickly and safely. Sirens and warning lights mounted in emergency vehicles are as tools to facilitate their movement through traffic to get them to their destination without any obstruction. However, there are some drivers who are unaware of the presence of the emergency vehicle. This is because some drivers like to listen to loud audio and some vehicles are equipped with a noise-canceling device resulting less outside noise can be heard from inside chassis. Therefore, there are several alert systems have been proposed to alert nearby vehicles with the presence of the emergency vehicles. In this paper, IoT based emergency vehicle alert system is proposed. In this system, NodeMCU, GPS module with antenna and LCD display are utilized as the hardware. For the software, Fritzing, Firebase Realtime Database and Arduino IDE are used to configure the activity of the system and MIT App Inventor is used to develop an application that provides a notification and inform the nearby vehicles the location of the emergency vehicle via map through smart phone. As the result, GPS module able to transmit the coordinates information of the emergency vehicle to the Firebase Realtime Database. Then the nearby driver within a radius range of 3.0 km from emergency vehicle receives a notification of "Emergency Vehicle Detected". Thus, the driver can open the maps to view the location of the emergency vehicle. It is shows that the data from NodeMCU successfully transmitted and received between NodeMCU, Firebase and the application. ERSITI TEKNIKAL MALAYSIA MELAKA

#### ABSTRAK

Kenderaan kecemasan seperti kereta polis, trak bomba dan ambulans perlu tiba ke destinasi mereka dengan cepat dan selamat. Siren dan lampu amaran yang dipasang di kenderaan kecemasan adalah sebagai alat untuk memudahkan pergerakan mereka melalui lalu lintas untuk mereka tiba ke destinasi tanpa sebarang halangan. Namun, ada sebilangan pemandu yang tidak menyedari terhadap kehadiran kenderaan kecemasan ini. Ini kerana ada sebilangan pemandu gemar mendengar audio yang kuat dan ada sebilangan kenderaan dilengkapi dengan alat peredam bunyi untuk mengurangkan bunyi dari luar supaya tidak dapat didengari dari dalam casis. Oleh itu, terdapat beberapa sistem amaran yang telah dicadangkan untuk memberi amaran kepada kenderaan berdekatan dengan kehadiran kenderaan kecemasan. Dalam laporan ini, sistem amaran kenderaan kecemasan berasaskan IoT telah dicadangkan. Dalam sistem ini, modul NodeMCU, modul GPS dan paparan LCD digunakan sebagai perkakasan. Untuk perisian, Fritzing, Firebase Realtime Database dan Arduino IDE digunakan untuk menkonfigurasi aktiviti sistem dan MIT App Inventor akan digunakan untuk membangunkan aplikasi yang berupaya untuk memberi amaran dan memberitahu kenderaan berdekatan mengenai lokasi kenderaan kecemasan dengan menggunakan peta pada telefon bimbit. Untuk hasilnya, modul GPS dapat menghantar maklumat berkenaan koordinat kenderaan kecemasan ke Firebase Realtime Database. Seterusnya, kenderaan berdekatan yang berada sekitar 3.0 km daripada kenderaan kecemasan mendapat pemberitahuan "Kenderaan Kecemasan Dikesan". Oleh itu, pemandu boleh membuka peta untuk melihat lokasi sebenar kenderaan kecemasan. Ini menunjukkan bahawa data dari NodeMCU berjaya dihantar dan diterima antara NodeMCU, Firebase dan aplikasi.

### ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First of all, thanks to God as the Final Year Project (FYP) is completed without any difficulty and distraction. I hereby would like to take this precious opportunity to thank all people who has involved generously in helping and assisting me while I was completing the FYP report which is a compulsory to all Universiti Teknikal Malaysia Melaka (UTeM) students in order to complete our degree.

First and foremost, I would like to express my sincere acknowledgement to my supervisor Dr. Fara Asyikin Binti Ali from the Electrical Engineering Department from Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM) for her undivided support morally and physically, assistance, guidance, tolerance, constructive critics and suggestion during the planning and development of this project.

Secondly, I would like to express my sincere thanks and appreciation to my entire lecturer from Faculty of Electrical and Electronic Engineering Technology (FTKEE) who had pass down their knowledge and guide me as well during my studies in UTeM. Besides that, I would like to express my sincere thanks and appreciation to my beloved family especially my parents for giving me support, encouragement and motivation from starting of the project until completion of the project.

I would like to thank everyone who is involved in this project either directly or indirectly for their helps and cooperation. Last but not least, special thanks to all of my friends and course mates as well as to all those who help for making my time at UTeM a memorable one.

# TABLE OF CONTENTS

|      |                                                    | PAGE |
|------|----------------------------------------------------|------|
| DEC  | LARATION                                           |      |
| APP  | ROVAL                                              |      |
| DED  | DICATION                                           |      |
| ABS  | TRACT                                              | i    |
| ABS  | TRAK                                               | ii   |
| ACK  | KNOWLEDGEMENTS                                     | iii  |
| ТАВ  | BLE OF CONTENTS                                    | iv   |
| LIST | T OF TABLES                                        | vi   |
| LIST | r of figures                                       | vii  |
| LIST | T OF SYMBOLS AND ABBREVIATIONS                     | ix   |
| LIST | T OF APPENDICES                                    | X    |
| СНА  | اونيوم سيتي تيڪني INTRODUCTION ملاك                | 1    |
| 1.1  | Background Study                                   | 1    |
| 1.2  | Problem Statement                                  | 3    |
| 1.3  | Project Objective                                  | 4    |
| 1.4  | Scope of Study                                     | 4    |
| 1.5  | Organization                                       | 5    |
| СНА  | APTER 2 LITERATURE REVIEW                          | 6    |
| 2.1  | Introduction                                       | 6    |
| 2.2  | Overview of Alert System                           | 7    |
| 2.3  | Related Works                                      | 7    |
|      | 2.3.1 Radio Frequency                              | 11   |
|      | 2.3.2 Internet of Things (IoT)                     | 12   |
| 2.4  | Comparison Previous Research Works                 | 15   |
|      | 2.4.1 Radio Broadcasting, Wi-Fi, RFID Tag and GPS. | 15   |

|      | 2.4.2 Arduino, Raspberry Pi and NodeMCU                     | 18 |
|------|-------------------------------------------------------------|----|
| 2.5  | Conclusion                                                  | 21 |
| СНАР | PTER 3 METHODOLOGY                                          | 22 |
| 3.1  | Introduction                                                | 22 |
| 3.2  | Project Planning                                            | 22 |
| 3.3  | Flowchart and System Block Diagram                          | 24 |
| 3.4  | Hardware Development                                        | 26 |
|      | 3.4.1 Microcontroller                                       | 27 |
|      | 3.4.2 NEO-6M GPS Module                                     | 28 |
|      | 3.4.3 I2C LCD Display                                       | 30 |
| 3.5  | Software Development                                        | 30 |
|      | 3.5.1 Fritzing                                              | 31 |
|      | 3.5.2 Firebase Realtime Database                            | 31 |
|      | 3.5.3 Arduino IDE                                           | 32 |
|      | 3.5.4 MIT App Inventor                                      | 33 |
| 3.6  | Conclusion                                                  | 34 |
| СНАР | PTER 4 RESULTS AND DISCUSSION                               | 35 |
| 4.1  | Circuit Implementation                                      | 35 |
| 4.2  | Program Code Implementation                                 | 36 |
| 4.3  | Development of Application.                                 | 39 |
| 4.4  | Prototype of The Project                                    | 41 |
| 4.5  | System Performance Evaluation                               | 41 |
| 4.6  | Time Taken to Receive The Notification for Different Radius | 42 |
| 4.7  | Rate of Accuracy of the system                              | 46 |
| 4.8  | Conclusion                                                  | 48 |
| СНАР | PTER 5 CONCLUSION AND RECOMMENDATIONS                       | 49 |
| 5.1  | Conclusion                                                  | 49 |
| 5.2  | Recommendation for Future Work                              | 49 |
| REFE | RENCES                                                      | 51 |
| APPE | NDICES                                                      | 53 |

# LIST OF TABLES

| TABLE                   | TITLE                                                                                                                                         | PAGE |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 2.1: Summary of   | related works                                                                                                                                 | 10   |
| Table 2.2: Comparison   | between Arduino and Raspberry Pi                                                                                                              | 20   |
| Table 3.1: NodeMCU N    | Module Specification                                                                                                                          | 28   |
| Table 3.2: NEO-6M GI    | PS module specification                                                                                                                       | 29   |
| Table 3.3: Arduino IDE  | E specification                                                                                                                               | 33   |
| Table 4.1: Time taken i | n a case of 1.0 km radius                                                                                                                     | 43   |
| Table 4.2: Time taken i | n a case of 2.0 km radius                                                                                                                     | 44   |
| Table 4.3: Time taken i | n a case of 3.0 km radius                                                                                                                     | 45   |
| Table 4.4: Accuracy ve  | rsus distance المحافظ ا<br>اونيونه سيتي تيكنيكل مليسي | 47   |
| UNIVER                  | RSITI TEKNIKAL MALAYSIA MELAKA                                                                                                                |      |

# LIST OF FIGURES

| FIGURE TITLE                                                                | PAGE   |
|-----------------------------------------------------------------------------|--------|
| Figure 1.1: Deaths in crashes involving emergency vehicles                  | 2      |
| Figure 2.1: Diagram of the radio ambulance system                           | 12     |
| Figure 2.2: Transmission of location coordinates to AWS cloud               | 13     |
| Figure 2.3: Block diagram of the IoT based stolen vehicle detection and amb | ulance |
| clearance system (Prof, 2017)                                               | 14     |
| Figure 2.4: Radio broadcasting                                              | 15     |
| Figure 2.5: Wi-Fi Module                                                    | 16     |
| Figure 2.6: RFID Module                                                     | 17     |
| Figure 2.7: GPS Module                                                      | 17     |
| Figure 2.8: Arduino Uno Module                                              | 18     |
| Figure 2.9: Raspberry Pi Module                                             | 19     |
| Figure 2.10: NodeMCU Module                                                 | 19     |
| Figure 3.1: Flowchart of project planning                                   | 23     |
| Figure 3.2: System flowchart                                                | 25     |
| Figure 3.3: System block diagram                                            | 26     |
| Figure 3.4: NodeMCU Module                                                  |        |
| Figure 3.5: NEO-6M GPS module                                               |        |
| Figure 3.6: External antenna                                                |        |
| Figure 3.7: I2C LCD Display                                                 | 30     |
| Figure 3.8: Fritzing software                                               | 31     |
| Figure 3.9: Firebase Realtime Database                                      | 32     |

| Figure 3.10: Arduino IDE                                       | 32 |
|----------------------------------------------------------------|----|
| Figure 3.11: MIT App Inventor                                  | 34 |
| Figure 4.1: Project circuit connection                         | 35 |
| Figure 4.2: Project circuit implementation                     | 36 |
| Figure 4.3: Emergency vehicle program code                     | 38 |
| Figure 4.4: Main screen of Emergency Vehicle Alert System Apps | 39 |
| Figure 4.5: Pop up of notification                             | 40 |
| Figure 4.6: Google maps shows the emergency vehicle's location | 40 |
| Figure 4.7: Model of project prototype                         | 41 |
| Figure 4.8: 1.0 km range of radius                             | 42 |
| Figure 4.9: 2.0 km range of radius                             | 43 |
| Figure 4.10: 3.0 km range of radius                            | 44 |
| Figure 4.11: Time taken for receiving notification             | 46 |
| Figure 4.12: Graph for accuracy of the system versus distance  | 47 |
| اونيۈم سيتي تيڪنيڪل مليسيا ملاك                                |    |
| UNIVERSITI TEKNIKAL MALAYSIA MELAKA                            |    |

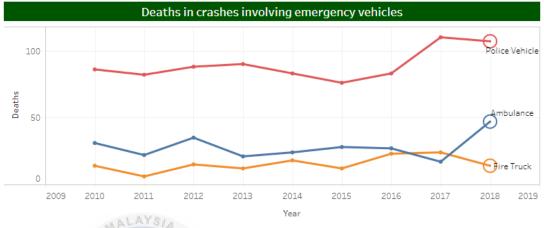
# LIST OF SYMBOLS AND ABBREVIATIONS

| IoT   | - Internet of Things                 |
|-------|--------------------------------------|
| Wi-Fi | - Wireless Fidelity                  |
| MCU   | - Microcontroller Unit               |
| IDE   | - Integrated Development Environment |
| Apps  | - Applications                       |
| PCB   | - Printed Circuit Board              |
| GUI   | Graphical Users Interface            |
| RFID  | - Radio Frequency Identification     |
|       | اونيوم سيتي تيكنيكل مليسيا ملاك      |
|       | UNIVERSITI TEKNIKAL MALAYSIA MELAKA  |

# LIST OF APPENDICES

| APPENDIX     | TITLE                          | PAGE |
|--------------|--------------------------------|------|
| Appendices 1 | Gantt Chart for PSM 1          | 53   |
| Appendices 2 | Gantt Chart for PSM 2          | 54   |
| Appendices 3 | Emergency_vehicle.ino          | 55   |
| Appendices 4 | Emergency vehicle apps program | 58   |




#### **CHAPTER 1**

#### INTRODUCTION

#### **1.1 Background Study**

An emergency vehicle is vehicle authorized and allowed to respond to a life-threatening emergency. Generally, police vehicle, ambulance and fire trucks are categorized as the emergency vehicle. These vehicles are normally operated by specified organization of government and also managed by charities, non-governmental organizations as well as certain commercial companies. In most states, emergency vehicles are allowed by law to break standard road rules such as break a traffic signal or cross the speed limit in order to reach their destination in the quickest possible period (Goldasz, 2017). However, there are also some states will take action against the driver of an emergency vehicle if the driver displays reckless disregard for other people's safety.

Besides, in a position of nearby vehicle, when drivers know the situation where they hear an emergency vehicle siren, sometimes they might get confused with what to do next. Locating the emergency vehicle, determining where it will go and what would be the safest option to give way, are always challenging. Thus, sometimes the driver responds too late or in a wrong situation, which can lead to a serious accident with the emergency vehicle which supposedly provide support and help. Moreover, many lives are lost in accidents involving emergency vehicles. As shown in Figure 1.1 statistic in (Council, 2018) state that 168 people died in emergency vehicle accidents. The most deaths were involving police vehicles (107), followed by ambulances (47), and fire trucks (14). Thus, a method in order to alert nearby vehicles drivers with the presence of the emergency vehicle is needed.





Since a decade ago, there are several emergency vehicle alert systems have been introduced such as Alert System for Emergency Vehicle Using Software-Defined Radio (Bosquez, Moreira and De La Cruz, 2017), Ambulance Detection and Traffic Control System (Karthik *et al.*, 2019) and IoT based Stolen Vehicle Detection and Ambulance Clearance System (Prof, 2017). In this study, Development of IoT Based Emergency Vehicle Alert System using NodeMCU is proposed. This system allows the driver of an emergency vehicle to show their current location to the nearby driver while they in an emergency. This proposed system also provides a notification to the nearby driver's smart phone when the system transmitted from the emergency vehicle within a radius range of 3.0 km.

#### **1.2 Problem Statement**

Generally, siren is used in emergency vehicles as a tool to alert nearby vehicles or others on their way. Siren is defined as a loud noise making device that transmit a signal or warning from an emergency vehicle to nearby vehicles and people. So that, the nearby vehicles and people will be alert and need to move their vehicle to give way to emergency vehicle such as ambulance, fire truck or police vehicles to allow them to arrive to the destination as soon as possible. However, the volume of the siren limits the distance at which the siren can be heard. Because of this limitation, it is difficult to locate the emergency vehicle, to decide where it is driving to, and what would be the best maneuver to give a way. Therefore, nearby drivers often react too late or in a wrong way, which may lead to severe accident with the emergency vehicle.

There are several approaches have been taken by previous researchers for example Alert System for Emergency Vehicle Using Software-Defined Radio (Bosquez, Moreira and De La Cruz, 2017). The objective is to transmit audio alert messages to FM receiver in nearby vehicle for alerting the driver to the presence of emergency vehicle. However, this research focused on the most listened radio station only to receive the audio signal. Next is Ambulance Detection and Traffic Control System (Karthik *et al.*, 2019). GPS module and Wi-Fi module are used to transmit the coordinate of the emergency vehicle and the microcontroller will make the traffic light turn green when the emergency vehicle needs to pass by. So that, it will make the road clear and avoid road congestion. However, the system is high-cost due large cloud size needed to monitor the road traffic. Then, IoT based Stolen Vehicle Detection and Ambulance Clearance System (Prof, 2017) is proposed to make the traffic light turn green when the RFID tag from the emergency vehicle and the receiver is match. This will avoid crash from the vehicle from another intersection by make sure only route that emergency vehicle will be passed by will turn green. Nevertheless, it also has a disadvantage where it requires the data from the starting point and end point of the journey. It may not be successful if the ambulance requires to take an alternative way for some reasons. Therefore, the Development of IoT Based Emergency Vehicle Alert System using NodeMCU is proposed.

In this study, the Development of IoT Based Emergency Vehicle Alert System using NodeMCU is proposed to be capable to help out equally between emergency vehicle drivers and road drivers in term of to avoid the collision. Furthermore, it is developed so that the dilemma that all emergency vehicle drivers are confronting may be reduced and it may deliver awareness to all drivers of it benefits and practicality in the upcoming.

### **1.3 Project Objective**

In this study, there are three main objectives. There are as follows:

- a) To design an IoT based emergency vehicle alert system using NodeMCU.
- b) To transmit and receive a signal from an emergency vehicle and nearby vehicle, respectively in a predefined distance.
- c) To analyze the performance of the system.

### **1.4** Scope of Study

This project consists of hardware and software. For the hardware, NodeMCU ESP8266 is used as a microcontroller to control the systems activity. NodeMCU with built-in Wi-Fi module is utilized in order to transmit the coordinate of emergency vehicle to Firebase Realtime Database. GPS module is used to provide the GPS coordinate of an emergency vehicle and GPS module inside smart phone is used to provide GPS coordinate of the nearby vehicles. Lastly, the LCD display is used to make easier for the emergency vehicle to know the current activity of the system.

For the software, MIT App Inventor and Arduino IDE are applied to configure the activity of the system. For the application to the users, MIT App Inventor will develop an application in order to give an alert and show the location of the emergency vehicle via maps. This system is limited to 3.0 km in radius from the emergency vehicle and limited to nearby users only.

### 1.5 Organization LAYS

This project centers around the alert system for an emergency vehicle using an IoT based system. This report comprises of five chapters. An introduction to the issue, objectives and scopes are given in **Chapter 1**. In **Chapter 2**, literature review on current methods embraced and dissimilar advances that actualized in past project as well as the comparison regarding pros and cons are discussed. Next, the project development including hardware and software, as well as the method applied are specifically explained in **Chapter 3**. In **Chapter 4**, results including data tabulation and project analysis are shown and discussed. Finally, conclusion and future suggestion will be highlighted in **Chapter 5**.