DESIGN & ANALYSIS OF PROPELLER BLADES FOR A SMALL-SIZED UAV

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN & ANALYSIS OF PROPELLER BLADES FOR A SMALL-SIZED UAV

CHANG HAN BING

FACULTY OF MECHANICAL ENGINEERING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

JUNE 2021

DECLARATION

I declare that this project report entitled "DESIGN & ANALYSIS OF PROPELLER BLADES FOR A SMALL-SIZED UAV" is the result of my own work except as cited in references

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of degree of Bachelor of Mechanical Engineering.

DEDICATION

To my beloved mother and father

ABSTRACT

An Unmanned Aerial Vehicle (UAV) nowadays has become an important part of people's lives. UAVs for transporting people or goods are considered to develop into reality. In this project, the main focus is to investigate the thrust performance from various parameters of propeller blades for small-sized UAVs. Using the propeller blade parameter for small-sized UAVs, the thrust performance was calculated based on the number of blades, blade pitch angle, and propeller diameter. The methodology to design the Variant 1 propeller blade for small-sized UAVs uses the reverse engineering method in SOLIDWORK 2018 software. After that, the SOLIDWORKS Flow Simulation analysis program is used to determine the thrust performance with the various propeller blade parameters for small-sized UAVs. The experimental setup testing will be designed to determine the thrust performance to validate the CFD simulation. The result shows that increase in the number of blades, blade pitch angle, and propeller diameter have better thrust performance for the small-sized UAVs.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Kini, kenderaan udara tanpa pemandu (UAV) telah menjadi bahagian penting dalam kehidupan masyarakat. UAV yang digunakan untuk mengangkut orang atau barang dianggap sebagai kenyataan. Dalam projek ini, prestasi teras pelbagai parameter bilah baling-baling UAV kecil dikaji. Dengan menggunakan parameter baling-baling baling-baling UAV kecil, prestasi tujahan dikira berdasarkan bilangan bilah, sudut nada dan diameter baling-baling. Kaedah merancang bilah baling-baling Variant 1 untuk drone kecil menggunakan kaedah teknik terbalik dalam perisian SOLIDWORK 2018. Selepas itu, program analisis Simulasi Aliran SOLIDWORKS digunakan untuk menentukan prestasi tuju pelbagai parameter bilah baling-baling UAV kecil. Pengujian peranti eksperimental bertujuan untuk menentukan prestasi tujahan untuk mengesahkan simulasi CFD. Hasilnya menunjukkan bahawa peningkatan bilangan bilah, sudut nada dan diameter baling-baling mempunyai prestasi tujahan yang lebih baik untuk UAV kecil.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

The finished of this thesis is thanks to all guidance and assistance given to me by many individuals and groups. I significantly appreciate the help from them all along to finish this thesis writing.

First and foremost, I would like to express my sincere and acknowledgment from my supervisor, En. WAN MOHD ZAILIMI BIN WAN ABDULLAH @ ZAKARIA from Universiti Technical Malaysia Melaka (UTeM) from the Faculty of Mechanical Engineering helped and supported me during this period and appreciated his guidance and teaching to complete this thesis. Without his guidance and knowledge that was given to me, I would be facing many problems during the process of finishing the thesis. I would also like to express my gratitude to my second panel, Pn. NURUL HANIM BINTI RAZAK for giving comments and guide for my project report.

Lastly, I would like to thank my parents for their moral support and support throughout my life. I would also like to thank all people who supported and guided me throughout this process.

TABLE OF CONTENTS

		Page
DECL	ARATION	i
APPR	OVAL	ii
DEDIC	CATION	iii
ABSTI	RACT	iv
ABSTI	RAK	v
ACKN	OWLEDGEMENTS	vi
TABL	E OF CONTENTS	vii
LIST (OF FIGURE	X
LIST OF TABLE		xii
LIST (OF ABBREVIATION	xiii
اونيوس سيتي تيڪنيڪل مليسيا LIST OF SYMBOL		xiv
Chapte		1
INTRO	DUCTION	1
1.1	Background	1
1.2	Problem Statement	2
1.3	Objective	2
1.4	Scope of work	2
СНАР	TER 2	3
LITER	RATURE REVIEW	3
2.1	Small-sized UAV	3
2.1.1	Introduction of UAV	3
2.1.2	Propeller Rotation for UAV Movement	4

2.1.3	3D Orientation for UAV Control	5
2.2	Basic of Propeller Blades	6
2.2.1	Design Principle of Propeller Blades	6
2.3	Propeller Theories	8
2.3.1	Momentum Theory	9
2.3.2	Blade Element Theory	11
2.3.3	Blade Element Momentum (BEM) Theory	12
CHAPT	TER 3	13
METH	ODOLOGY	13
3.1	Introduction	13
3.2	Model Geometry	15
3.3	Design of Variant 1 Propeller Blade	16
3.4	CFD Flow Simulation	18
3.4.1	Pre-processing	18
3.4.1.1	Rotating Reference	18
3.4.1.2	وينوبر سيتي تيڪني Computational Domain	19
3.4.1.3	Boundary Conditions	20
3.5	Experimental Setup to Validate Simulation Testing	20
CHAPT	TER 4	22
RESUL	T AND DISCUSSION	22
4.1	Introduction	22
4.2	Results from CFD flow simulation and Experimental setup testing from Varian	nt 1
propeller blade for small-sized UAV 22		
4.2.1	CFD Flow Simulation Analysis	22
4.2.2	Experimental setup Testing Analysis	26
4.2.3	Comparison of the CFD Flow Simulation and Experimental setup Testing	28
4.3	Result from Variable Parameter of Propeller Blade for Small-Sized UAV	29

CHAPTER 5	32
CONCLUSION AND RECOMMENDATION	32
REFERENCE	33
APPENDIX A: Pre-Processing Setup	35

LIST OF FIGURE

	PAGE
Figure 2.1: Type of UAV	3
Figure 2.2: + and X orientation of the quadcopter	4
Figure 2.3: UAV Setup	5
Figure 2.4: Roll, Pitch, and Yaw moment	5
Figure 2.5: Propeller Blade Cross-section Velocity Diagram	6
Figure 2.6: Momentum Theory Relationships	10
Figure 2.7: Depiction of the Propeller Blade Cross-section	11
Figure 3.1: Flowchart for the project	14
Figure 3.2: Small-Sized UAV Model with Variant 1 Propeller Blade	16
Figure 3.3: Sketch View of Propeller Blade	17
Figure 3.4: Final CAD Model of Propeller Blade	17
Figure 3.5: Rotating Reference Frame for Simulation	19
Figure 3.6: Simplified Computational Domain	19
Figure 3.7: Top View of Experiment Setup	21
Figure 3.8: Front View of Experiment Setup	21
Figure 4.1: Pressure Distribution Contour	23

Figure 4.2: Velocity Distribution Contour		
Figure 4.3: Temperature Distribution Contour		
Figure 4.4: Velocity Vector		
Figure 4.5: Velocity Flow Trajectory 25		
Figure 4.6: Minimum Weight of Small-Sized UAV 26		
Figure 4.7: Free Body Diagram (FBD) for Experimental Testing Setup 27		
Figure 4.8: The Graph of Thrust Force with Variable Number of Blades for Small-Sized UAV 30		
Figure 4.9. The Graph of Thrust Force with Variable Blade Pitch Angle for Small-Sized		
UAV	30	
Figure 4.10: The Graph of Thrust Force with Variable Propeller Diameter for Small-Sized		
	31	
اونيومرسيتي تيكنيكل مليسيا ملاك		

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLE

Table 3.1: Parameter Value of Variant Propeller Blade for Small-Sized UAV	15
Table 4.1: Thrust Force with Variant 1 Propeller Blade for Small-Sized UAV	23
Table 4.2: Thrust Force in CFD Flow Simulation and Experimental Testing	28
Table 4.3: Thrust Force with Variable Parameter of Propeller Blade for Smal	l-Sized UAV
	29

LIST OF ABBREVIATION

- UAV Unmanned Aerial Vehicle
- BEM Blade Element Momentum
- CFD Computational Fluid Dynamics
- RPM Revolutions per minute

FBD

LIST OF SYMBOL

CL	Lift coefficient
C _D	Drag coefficient
L	Propeller length
D	Propeller diameter
Т	Thrust
v	Velocity of incoming flow
Δv	Additional velocity, acceleration by the propeller
ρ	Density of the air
Pa	اونيوسيني تيڪنيڪavailable power ملاك
Pengine	Engine power UNIVERSITI TEKNIKAL MALAYSIA MELAKA
η	Efficiency
CT	Thrust coefficient
C _Q	Torque coefficient
C _P	Power coefficient
Q	Torque
Р	Mechanical power supplied to turn the propeller
n	Rotational speed
J	Advance ratio
$ ho V_d A$	Mass per unit time through the disk

- $(V_s V_0)$ Velocity increase from far upstream to far downstream
- A Disk area

Chapter 1

INTRODUCTION

1.1 Background

An abbreviation for Unmanned Aerial Vehicle is the term UAV, commonly called a drone, is an aircraft system that flies from a distance. The advantages of unmanned vehicles include the absence of humans from the way of damage and a degree of maneuverability and stability in the deployment that was previously unachievable while a human pilot needed accommodation. UAVs can be remotely operated aircraft that are flown at a ground control station by a pilot or can fly manually based on pre-programmed flight plans or more advanced dynamic automation systems.

One of the fundamental elements of propulsion and aircraft design is the propeller, which generates the thrust in the same direction as a spinning wing. There are at least two blades connected to a central hub in the standard propeller design. The central hub helps to connect the blades to the shaft of the motor. The blades are generally long and narrow, and a cut can create an airfoil shape through the blade perpendicular to the long axis. The optimum design of the blade is based on the wing's aerodynamic properties, i.e. the coefficients of lift and drag and the annual average wind speed. These blade designs are also chosen based on the principle of blade element momentum (BEM).

1.2 Problem Statement

In this technology era, small-sized UAVs in this century have become the most popular day by day. Thus, operating on the performances of thrust for small-sized UAV will affect by the blade design parameters. The idea aims to investigate the parameters of the blade design able to generate the thrust through the CFD flow simulation and experiment just for validation, this is because to identify which blade design parameters is most efficient to generate the thrust for the small-sized UAV.

1.3 Objective

For this project, there are two objectives to be achieved as listed below:

- 1. To study the effects of the blade design parameters to generated thrust.
- 2. To estimate the amount of thrust required in small-sized UAV design.
- 1.4 Scope of work UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The scope of this project are listed as follows:

- 1. This report will focus on the study and review the small-sized UAV blade design parameters.
- Only carry out the result of CFD flow simulation and analysis of the small-sized UAV blade are presented in this project.
- 3. This project will be to design an experimental setup for thrust measurement to validate with the CFD flow simulation.
- 4. This project will present the reference data of the blade design parameters.

CHAPTER 2

LITERATURE REVIEW

2.1 Small-sized UAV

2.1.1 Introduction of UAV

There are generally two main UAV types: fixed-wing systems and multirotor systems, as shown in figure 2.1. The fixed-wing system is commonly used to describe the use of fixed static wings in the aviation industry, combined with forwarding airspeed to generate the lift. Besides that, the aviation multirotor systems represent an aircraft that uses rotating wings to create the lift. The advantages of fixed-wing systems can fly faster than multirotor systems, more suitable for long-distance travel. However, the multirotor systems do not need a landing path and create less noise than fixed-wing systems (Vergouw et al., 2016).

Figure 2.1: Types of UAV

(https://www.gao.gov/key_issues/unmanned_aerial_systems/issue_summary)

Nevertheless, this project's suitable UAV type would be the multirotor systems because of its rotating wings to generate the thrust and more flexible maneuvers than fixedwing systems. In most commonly, the quadcopter is the most popular multirotor frame, which consists of four motors. The hexacopter and octocopter are other standard configurations in the multirotor frame, six and eight motors, respectively (Polak, 2012). These UAVs have more power for thrust than the quadcopter. Figure 2.2 shown the + and X orientation of the quadcopter. They need to be as light as possible without sacrificing the UAV platform's manufacturing components' strength. The UAV manufactures these composite materials such as carbon fiber or fiberglass and other lightweight materials such as aluminium or plastic (Khan, 2011).

2.1.2 Propeller Rotation for UAV Movement

Two pairs of the counter-rotating rotors and propellers, positioned at the top of the square assembly, make up the small-sized UAV. The UAV setup consists of a couple of motors that will rotate clockwise, while the other pair of motors will rotate counter-clockwise, as shown in figure 2.3 (Alejandro, n.d.). Even out the two opposing rotations to keep the UAV stable. Therefore, if all the rotors were to rotate in the same direction, it will result in net torque, resulting in the complete UAV rotation. As the rotors rotate all together, they push the air down and the airlifts the rotor back. When the rotors spin rapidly, the UAV rises into the atmosphere, and the UAV descends to the ground when the rotors slow down.

Figure 2.3: UAV Setup

(https://link.springer.com/article/10.1007/s42452-019-0698-7)

2.1.3 3D Orientation for UAV Control

The research was done by Parihar et al., 2016 shows a small vehicle with four rotor propellers on the cross frame can be identified by UAV. The goal is to control movement by using fixed pitch rotors. The UAV's motion depends on the three components: roll, pitch, and yaw moments, as shown in figure 2.4. Besides that, to control these motions, the thrust, aileron, elevator, and rudder are used with four actuators. Thrust is a necessary input for each movement, whereas the other three can be used at once or combining the desired action to change direction and angular motion. The rotation rudder is used as the control input for the yaw angles. The elevator can also be controlled by aileron deflective for the pitch angle control and roll angle control (Warsi et al., 2014).

Figure 2.4: Roll, Pitch, and Yaw moment

(https://cacm.acm.org/magazines/2018/10/231377-fundamental-concepts-of-reactivecontrol-for-autonomous-drones/fulltext)

2.2 Basic of Propeller Blades

The research was done by Whitmore & Merrill, 2012 shows a propeller blade is a mechanical instrument that, through torque transfer, transforms motor power to axial thrust. Thrust is created when the rotating airfoil mount catches the fluid, accelerates the fluid, and drives it down the fluid stream tube. The more air the propeller discharges per unit time, the more power is transferred to thrust. Propeller blades are inclined to incoming flow to increase air accumulation and mechanical performance. Figure 2.5 below shown the velocity diagram for a cross-section of the propeller blade.

2.2.1 Design Principle of Propeller Blades

Depending on the optimum propeller principle, only a small number of design parameters have to be defined. These variables include the number of blades, the propeller's diameter, lift and drag distributions of the propeller, axial velocity of the flow, and the medium's fluid flow density. The increased number of blades generally will affect the thrust performance; however, the more excellent thrust distribution is available with a higher number of blades, which helps maintain the propulsion system balance, and that a trade-off is required. The propeller's diameter also affects its performance significantly. Naturally, the larger propellers can generate more power and carry a larger volume of fluid. The design point's performance analysis will review the distribution of the lift coefficient, C_L and drag coefficient, C_D across the radius. The airfoils must be operating at maximum L/D for optimal performance. Nevertheless, if the propeller can generally work in bad condition, a smaller angle of attack in design is required. The incoming fluid velocity and the rotational velocity (RPM) define the propeller's pitch distribution. The axial velocity can create larger propeller designs with low efficiency. Although the fluid density will not influence the thrust's performance, it directly affects its size and shape (Publication et al., n.d.).

The approach based on the lifting/surface theories of the theoretical propeller design is well known and frequently applied. These design tools enable naval architects to quickly build an optimized propeller using a computer without the geometrical limitations seen in the propellers' sequence with relatively limited geometry choices. However, the arrangement of the propellers is still in use. They are now very frequently used in light or modestly charged propeller preliminary design. Besides, the traditional series propellers are also good options for those who cannot afford lifting surface software (Chen & Shih, 2007).

Furthermore, the propeller design requires the commonly used XFOIL research and QMIL and QPROP numerical thrust optimization programmed. XFOIL was used to achieve aerodynamical airfoil design properties such as crucial parameter values for the lift and drag. These values were then used for QMIL and QPROP, applying the mission system's characteristics at a conservative design process, to establish basic propeller geometry for reduced induced loss. These systems are essential for chosen moving motor performance parameters (Tracy, 2011).

The propeller's design for use on the small-sized UAV platforms is customarily completed to optimize the propeller's performance. The thrust limitation will be used to approximate the aircraft's conditions when the power limitation is used to simulate the motor or the motor performance to which the propeller is attached. However, it usually is much more challenging to find the best design than to improve propeller performance under such operating conditions (MacNeill et al., 2017).