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ABSTRACT 

 

 

An Unmanned Aerial Vehicle (UAV) nowadays has become an important part of people’s 

lives. UAVs for transporting people or goods are considered to develop into reality. In this 

project, the main focus is to investigate the thrust performance from various parameters of 

propeller blades for small-sized UAVs. Using the propeller blade parameter for small-sized 

UAVs, the thrust performance was calculated based on the number of blades, blade pitch 

angle, and propeller diameter. The methodology to design the Variant 1 propeller blade for 

small-sized UAVs uses the reverse engineering method in SOLIDWORK 2018 software. 

After that, the SOLIDWORKS Flow Simulation analysis program is used to determine the 

thrust performance with the various propeller blade parameters for small-sized UAVs. The 

experimental setup testing will be designed to determine the thrust performance to validate 

the CFD simulation. The result shows that increase in the number of blades, blade pitch 

angle, and propeller diameter have better thrust performance for the small-sized UAV.  
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ABSTRAK 

 

 

Kini, kenderaan udara tanpa pemandu (UAV) telah menjadi bahagian penting dalam 

kehidupan masyarakat. UAV yang digunakan untuk mengangkut orang atau barang 

dianggap sebagai kenyataan. Dalam projek ini, prestasi teras pelbagai parameter bilah 

baling-baling UAV kecil dikaji. Dengan menggunakan parameter baling-baling baling-

baling UAV kecil, prestasi tujahan dikira berdasarkan bilangan bilah, sudut nada dan 

diameter baling-baling. Kaedah merancang bilah baling-baling Variant 1 untuk drone kecil 

menggunakan kaedah teknik terbalik dalam perisian SOLIDWORK 2018. Selepas itu, 

program analisis Simulasi Aliran SOLIDWORKS digunakan untuk menentukan prestasi 

tuju pelbagai parameter bilah baling-baling UAV kecil. Pengujian peranti eksperimental 

bertujuan untuk menentukan prestasi tujahan untuk mengesahkan simulasi CFD. Hasilnya 

menunjukkan bahawa peningkatan bilangan bilah, sudut nada dan diameter baling-baling 

mempunyai prestasi tujahan yang lebih baik untuk UAV kecil. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Background 

 

An abbreviation for Unmanned Aerial Vehicle is the term UAV, commonly called a 

drone, is an aircraft system that flies from a distance. The advantages of unmanned vehicles 

include the absence of humans from the way of damage and a degree of maneuverability and 

stability in the deployment that was previously unachievable while a human pilot needed 

accommodation. UAVs can be remotely operated aircraft that are flown at a ground control 

station by a pilot or can fly manually based on pre-programmed flight plans or more 

advanced dynamic automation systems. 

One of the fundamental elements of propulsion and aircraft design is the propeller, 

which generates the thrust in the same direction as a spinning wing. There are at least two 

blades connected to a central hub in the standard propeller design. The central hub helps to 

connect the blades to the shaft of the motor. The blades are generally long and narrow, and 

a cut can create an airfoil shape through the blade perpendicular to the long axis. The 

optimum design of the blade is based on the wing's aerodynamic properties, i.e. the 

coefficients of lift and drag and the annual average wind speed. These blade designs are also 

chosen based on the principle of blade element momentum (BEM). 
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1.2  Problem Statement 

 

In this technology era, small-sized UAVs in this century have become the most 

popular day by day. Thus, operating on the performances of thrust for small-sized UAV will 

affect by the blade design parameters. The idea aims to investigate the parameters of the 

blade design able to generate the thrust through the CFD flow simulation and experiment 

just for validation, this is because to identify which blade design parameters is most efficient 

to generate the thrust for the small-sized UAV.  

 

1.3 Objective 

 

For this project, there are two objectives to be achieved as listed below: 

 

1. To study the effects of the blade design parameters to generated thrust. 

2. To estimate the amount of thrust required in small-sized UAV design. 

 

1.4 Scope of work 

 

The scope of this project are listed as follows: 

 

1. This report will focus on the study and review the small-sized UAV blade design 

parameters. 

2. Only carry out the result of CFD flow simulation and analysis of the small-sized UAV 

blade are presented in this project. 

3. This project will be to design an experimental setup for thrust measurement to validate 

with the CFD flow simulation. 

4. This project will present the reference data of the blade design parameters. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Small-sized UAV 

 

2.1.1 Introduction of UAV 

 

There are generally two main UAV types: fixed-wing systems and multirotor systems, 

as shown in figure 2.1. The fixed-wing system is commonly used to describe the use of fixed 

static wings in the aviation industry, combined with forwarding airspeed to generate the lift. 

Besides that, the aviation multirotor systems represent an aircraft that uses rotating wings to 

create the lift. The advantages of fixed-wing systems can fly faster than multirotor systems, 

more suitable for long-distance travel. However, the multirotor systems do not need a 

landing path and create less noise than fixed-wing systems (Vergouw et al., 2016). 

 

Figure 2.1: Types of UAV 

(https://www.gao.gov/key_issues/unmanned_aerial_systems/issue_summary) 

Nevertheless, this project's suitable UAV type would be the multirotor systems 

because of its rotating wings to generate the thrust and more flexible maneuvers than fixed-

wing systems. In most commonly, the quadcopter is the most popular multirotor frame, 

which consists of four motors. The hexacopter and octocopter are other standard 

configurations in the multirotor frame, six and eight motors, respectively (Polak, 2012). 

https://www.gao.gov/key_issues/unmanned_aerial_systems/issue_summary
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These UAVs have more power for thrust than the quadcopter. Figure 2.2 shown the + and X 

orientation of the quadcopter. They need to be as light as possible without sacrificing the 

UAV platform's manufacturing components' strength. The UAV manufactures these 

composite materials such as carbon fiber or fiberglass and other lightweight materials such 

as aluminium or plastic (Khan, 2011). 

 

Figure 2.2: + and X orientation of the quadcopter 

(https://www.quora.com/Why-is-x-configuration-preferred-over-+-config-of-quadcopter) 

 

2.1.2 Propeller Rotation for UAV Movement 

 

Two pairs of the counter-rotating rotors and propellers, positioned at the top of the 

square assembly, make up the small-sized UAV. The UAV setup consists of a couple of 

motors that will rotate clockwise, while the other pair of motors will rotate counter-

clockwise, as shown in figure 2.3 (Alejandro, n.d.). Even out the two opposing rotations to 

keep the UAV stable. Therefore, if all the rotors were to rotate in the same direction, it will 

result in net torque, resulting in the complete UAV rotation. As the rotors rotate all together, 

they push the air down and the airlifts the rotor back. When the rotors spin rapidly, the UAV 

rises into the atmosphere, and the UAV descends to the ground when the rotors slow down.  

https://www.quora.com/Why-is-x-configuration-preferred-over-+-config-of-quadcopter
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Figure 2.3: UAV Setup 

(https://link.springer.com/article/10.1007/s42452-019-0698-7) 

 

2.1.3 3D Orientation for UAV Control 

 

The research was done by Parihar et al., 2016 shows a small vehicle with four rotor 

propellers on the cross frame can be identified by UAV. The goal is to control movement by 

using fixed pitch rotors. The UAV's motion depends on the three components: roll, pitch, 

and yaw moments, as shown in figure 2.4. Besides that, to control these motions, the thrust, 

aileron, elevator, and rudder are used with four actuators. Thrust is a necessary input for each 

movement, whereas the other three can be used at once or combining the desired action to 

change direction and angular motion. The rotation rudder is used as the control input for the 

yaw angles. The elevator can also be controlled by aileron deflective for the pitch angle 

control and roll angle control (Warsi et al., 2014). 

 

Figure 2.4: Roll, Pitch, and Yaw moment 

(https://cacm.acm.org/magazines/2018/10/231377-fundamental-concepts-of-reactive-

control-for-autonomous-drones/fulltext) 

https://link.springer.com/article/10.1007/s42452-019-0698-7
https://cacm.acm.org/magazines/2018/10/231377-fundamental-concepts-of-reactive-control-for-autonomous-drones/fulltext
https://cacm.acm.org/magazines/2018/10/231377-fundamental-concepts-of-reactive-control-for-autonomous-drones/fulltext
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2.2 Basic of Propeller Blades 

 

The research was done by Whitmore & Merrill, 2012 shows a propeller blade is a 

mechanical instrument that, through torque transfer, transforms motor power to axial thrust. 

Thrust is created when the rotating airfoil mount catches the fluid, accelerates the fluid, and 

drives it down the fluid stream tube. The more air the propeller discharges per unit time, the 

more power is transferred to thrust. Propeller blades are inclined to incoming flow to increase 

air accumulation and mechanical performance. Figure 2.5 below shown the velocity diagram 

for a cross-section of the propeller blade. 

 

Figure 2.5: Propeller Blade Cross-section Velocity Diagram 

 

2.2.1 Design Principle of Propeller Blades 

 

Depending on the optimum propeller principle, only a small number of design 

parameters have to be defined. These variables include the number of blades, the propeller's 

diameter, lift and drag distributions of the propeller, axial velocity of the flow, and the 

medium's fluid flow density. The increased number of blades generally will affect the thrust 

performance; however, the more excellent thrust distribution is available with a higher 

number of blades, which helps maintain the propulsion system balance, and that a trade-off 

is required. The propeller's diameter also affects its performance significantly. Naturally, the 

larger propellers can generate more power and carry a larger volume of fluid. The design 
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point's performance analysis will review the distribution of the lift coefficient, CL and drag 

coefficient, CD across the radius. The airfoils must be operating at maximum L/D for optimal 

performance. Nevertheless, if the propeller can generally work in bad condition, a smaller 

angle of attack in design is required. The incoming fluid velocity and the rotational velocity 

(RPM) define the propeller's pitch distribution. The axial velocity can create larger propeller 

designs with low efficiency. Although the fluid density will not influence the thrust's 

performance, it directly affects its size and shape (Publication et al., n.d.). 

The approach based on the lifting/surface theories of the theoretical propeller design 

is well known and frequently applied. These design tools enable naval architects to quickly 

build an optimized propeller using a computer without the geometrical limitations seen in 

the propellers' sequence with relatively limited geometry choices. However, the arrangement 

of the propellers is still in use. They are now very frequently used in light or modestly 

charged propeller preliminary design. Besides, the traditional series propellers are also good 

options for those who cannot afford lifting surface software (Chen & Shih, 2007). 

Furthermore, the propeller design requires the commonly used XFOIL research and 

QMIL and QPROP numerical thrust optimization programmed. XFOIL was used to achieve 

aerodynamical airfoil design properties such as crucial parameter values for the lift and drag. 

These values were then used for QMIL and QPROP, applying the mission system's 

characteristics at a conservative design process, to establish basic propeller geometry for 

reduced induced loss. These systems are essential for chosen moving motor performance 

parameters (Tracy, 2011). 

The propeller's design for use on the small-sized UAV platforms is customarily 

completed to optimize the propeller's performance. The thrust limitation will be used to 

approximate the aircraft's conditions when the power limitation is used to simulate the motor 

or the motor performance to which the propeller is attached. However, it usually is much 

more challenging to find the best design than to improve propeller performance under such 

operating conditions (MacNeill et al., 2017). 

 

 

 


