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ABSTRACT 

 

 

Waves are a natural phenomenon that packs a tremendous amount of energy as it travels a 

long distance with minimal to no loss of energy. Waves are caused by winds formed from 

the difference in environmental temperature in different locations around the globe. 

However, the energy packed in waves is lost as they crash into coastlines worldwide. In 

order to make use of the wave energy, wave energy conversion system is introduced. In 

this project, a wave energy conversion system using single and double linear generators 

was studied by practical simulation on a scaled-down model of a mini wave generator 

harvesting system. The effectiveness of single linear generator for different distances and 

double linear generators for different gap distances in producing electrical voltage was 

investigated with respect to different speed of wave generator. The setup that generates the 

highest electrical voltage was determined as the best location of single linear generator and 

best gap distances for double linear generators with relation to the specific speed of wave 

generator. The experiment was started off by running preliminary tests using a pre-built 

test rig. Modifications were performed wherever necessary to ensure the smoothness of the 

simulation. Results showed that single linear generator generates higher electrical voltage 

than double linear generators. This is because more linear generators reduce the average 

power generated per wave energy converter, hence a reduced total electrical voltage 

generation. This is proven with the comparison in the highest average total voltage 

generated, where single linear generator generated 1.35mV at 70RPM while double linear 

generators generated 0.65mV at 50RPM. This shows that the highest average total voltage 

generated by the single linear generator is 107.69% higher than the double linear 

generators. The highest total voltage generated with single linear generator is 1.8mV at 

distance of linear generator A, 𝑥, of 35cm at 70RPM. The highest total voltage generated 

with double linear generators is 0.8mV at gap distance of linear generators, 𝑥, of 28cm at 

50RPM and at gap distance of linear generators, 𝑥, of 38cm at 90RPM. The experiment on 

single linear generator showed relatively significant difference in total voltage generated 

depending on the location of linear generator, whereas for double linear generators, the 

difference is minimal between various gap distances of linear generators. Overall, for 

single linear generator, the pattern showed that as distance of linear generator A, x, 

increases, the total voltage generated increases. In general, for double linear generators, as 

gap distance, x, increases, the total voltage generated increases. The change in depth of 

water in this test rig also does not influence the generation of electrical voltage as the 

strength of the waves outweigh the drag force on the tank bed. 
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ABSTRAK 

 

 

Ombak merupakan suatu fenomena semula jadi yang mempunyai tenaga yang kuat dan 

berkebolehan untuk menempuh jarak jauh tanpa kehilangan tenaga. Ombak dihasilkan 

oleh angin yang terbentuk daripada perbezaan suhu persekitaran di lokasi berbeza di 

seluruh dunia. Namun, tenaga yang tersimpan dalam ombak itu hilang apabila ombak 

melanggar pantai di seluruh dunia. Bagi memanfaatkan tenaga ombak itu, sistem 

penukaran tenaga ombak diperkenalkan. Dalam projek ini, sistem penukaran tenaga 

ombak yang menggunakan penjana lelurus tunggal dan berkembar akan dikaji melalui 

simulasi praktikal pada model sistem penjana ombak mini. Keberkesanan penjana lelurus 

tunggal pada jarak yang berbeza dan penjana lelurus berkembar pada jarak sela yang 

berbeza dalam menjana voltan elektrik akan dikaji dengan kelajuan penjana ombak yang 

berbeza. Cara pengaturan pelantar ujian yang menjana voltan elektrik yang paling tinggi 

akan ditentukan sebagai lokasi penjana lelurus tunggal yang terbaik dan juga jarak sela 

bagi penjana lelurus berkembar yang terbaik berhubung dengan kelajuan penjana ombak 

yang tertentu. Ujikaji bermula dengan menjalani ujian permulaan dengan menggunakan 

pelantar ujian sedia ada. Pengubahsuaian telah dilakukan di mana yang perlu untuk 

memastikan kelancaran simulasi. Hasil ujikaji menunjukkan bahawa penjana lelurus 

tunggal menjana voltan elektrik yang lebih tinggi berbanding dengan penjana lelurus 

berkembar. Ini sebab penjana lelurus yang lebih akan mengurangkan kuasa purata yang 

dihasilkan setiap penukar tenaga gelombang, membawa kepada pengurangan jumlah 

penjanaan voltan elektrik. Ini terbukti dengan perbandingan jumlah penjanaan voltan 

purata tertinggi, di mana penjana lelurus tunggal menjana 1.34mV pada 70RPM 

manakala penjana lelurus berkembar menjana 0.65mV pada 50RPM. Ini menunjukkan 

bahawa jumlah penjanaan voltan purata tertinggi oleh penjana lelurus tunggal adalah 

107.69% lebih tinggi dairpada penjana lelurus berkembar. Jumlah penjanaan voltan yang 

tertinggi dengan menggunakan penjana lelurus tunggal ialah 1.8mV pada jarak penjana 

lelurus A, 𝑥 , 35cm pada 70RPM. Jumlah penjanaan voltan yang tertinggi dengan 

menggunakan penjana lelurus berkembar ialah 0.8mV pada jarak jurang penjana lelurus, 

𝑥, 28cm pada 50RPM dan jarak jurang penjana lelurus, 𝑥, 38cm pada 90RPM. Ujikaji 

pada penjana lelurus tunggal menunjukkan perbezaan yang ketara dalam jumlah 

penjanaan voltan bergantung pada lokasi penjana lelurus, sedangkan untuk penjana 

lelurus berkembar, perbezaan adalah minimum antara pelbagai jarak jurang penjana 

lelurus. Secara keseluruhannya, bagi penjana lelurus tunggal, coraknya menunjukkan 

bahawa apabila jarak penjana lelurus tunggal A, x, meningkat, jumlah penjanaan voltan 

meningkat. Secara umumnya, bagi penjana lelurus berkembar, apabila jarak jurang, x, 

meningkat, jumlah penjanaan voltan meningkat. Perubahan kedalaman air di dalam 

pelantar ujian ini juga tidak mempengaruhi penjanaan voltan elektrik kerana kekuatan 

ombak melebihi daya seretan dasar tangki.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.0 Background 

Waves are a natural phenomenon that occurs on the surface of the ocean. On earth, 

97% is covered by water bodies. 70% of the earth’s surface is the ocean. The ocean is a 

huge reservoir of energy waiting to be harvested in the form of waves, water current, 

thermal resources, and tides (Singh, 2019). Waves, being one of the forms, comes from the 

generation of circular motion in the ocean caused by the winds produced from the 

difference in temperature throughout the globe. There are two types of waves present on 

the ocean, standing waves, and progressive waves. A progressive wave is a wave that is 

characterized by progressive forward motion, whereas a standing wave is a wave that 

oscillates vertically in a fixed point without any forward progression (Allaby, 2008). 

Waves carry an overwhelming amount of energy in the form of kinetic energy and 

potential energy. Wave energy tends to be lost and absorbed by the environment as it hits 

the coast. The total amount of energy that can be generated by waves breaking around the 

world’s coastlines can go up to 2 to 3 million megawatts (Khaligh and Onar, 2017). Thus, 

by placing electric generators onto the surface of the ocean, the wave energy will be able to 

be converted into electrical energy which can be used to power the electrical grid that 

channels electricity from as large as factories to as small as residential areas. The electric 

generators that convert wave energy to electrical energy are known as wave energy 
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converters (WEC). Wave energy carries kinetic energy that is dependent on the speed and 

duration of the wind that causes the wave formation, the depth and area of the water body 

affected by the wind, and the seabed condition. In order to produce an efficient wave 

energy harvesting system, many conditions need to be considered. This includes the sea 

conditions at all times, as well as the method of transmission of electricity through 

turbulent water bodies. The operating cost of a wave energy harvesting system may also be 

of higher cost than other power plants due to its complexity (Khaligh and Onar, 2017). 

Wave energy has many advantages. Firstly, wave energy is produced through a 

natural phenomenon, thus it is considered clean and renewable energy where the 

environment is not harmed in any way. There are also no chemical reactions in the 

production of wave energy which leads to little environmental impact. Secondly, wave 

energy is more predictable and consistent than other renewable energy such as solar energy 

and wind energy. Thirdly, the energy contained within wave energy is of very high density, 

which means more energy can be converted. Wave energy also has the capability to travel 

very long distances with minimal to no loss in energy. 

The challenges that arise when harvesting wave energy are that wave energy has a 

huge variation in the range of force and energy. Thus, the wave energy conversion system 

should be able to harvest energy from an average ocean climate and also survive harsh 

ocean storms. With all the absurd requirements that the system has to achieve, the system 

still has to remain economical for companies to build. Besides that, the energy conversion 

system should be able to meet the requirements imposed on the electrical grid network so 

that the power flow from the WEC to the electrical grid is maximized. 

There are three fundamental technology designs that revolve around the concept of 

wave energy conversion, namely the attenuator, the point absorber, and the terminator. The 

Pelamis, the Ocean Power Technology’s Powerbuoy, and the Salter’s Duck are examples 
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of attenuator, point absorber, and terminator, respectively. Unlike other renewable energy 

harvesting technology, wave energy is very broad such that there are patents for more than 

1000 wave energy conversion technologies with various designs. The installation location 

of the wave energy harvesting device can be broken into three categories: onshore, 

nearshore, and offshore (Blackledge et al., 2013). 

 

1.1 Statement of The Purpose 

The purpose of this study is to determine the performance of single and double 

linear generators in harvesting mini wave energy and provide improvements in possible 

aspects. 

 

1.2 Problem Statement 

Wave energy is a result of constant wind motion that occurs due to a difference in 

temperature around the globe. This continuous wind motion is captured by the ocean and 

converted into wave energy. Wave energy carries a tremendous amount of energy as it 

travels a long distance with little to no loss in energy. However, this huge amount of 

energy that could amount to 2 to 3 million megawatts is wasted as waves hit coastlines 

worldwide. Wave energy conversion technologies are invented to harvest the tremendous 

amount of energy packed in waves. However, there are challenges to overcome where the 

WECs have to be able to harvest energy from an average ocean climate with huge variation 

in the range of force and energy, as well as being able to withstand harsh ocean storms. 

The WECs also have to remain economical to be built despite the absurd requirements it 

has to satisfy. The wave energy conversion system also has to fulfill the requirements 
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imposed on the electrical grid network in terms of power flow so that the energy received 

by the electrical grid is maximized.  

In this project, a mini wave energy conversion system using single and double 

linear generators was studied on their performance. The optimum distance of the single 

linear generator, as well as the optimum gap distance for double linear generators, are 

variables studied on. The best location for single linear generator and the best gap distance 

for double linear generators were determined such that the electrical voltage produced are 

the highest. 

With this study, a wave energy conversion system can be built on suitable 

coastlines worldwide with minimal cost and producing energy at higher efficiency. Figure 

1.1 illustrates the scenario of ocean waves colliding into concrete walls causing energy to 

be absorbed and lost. 

 

 

Figure 1.1: Waves hitting the coastline (Keegan, 2020) 
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1.3 Objective 

The objectives of this project are as follows: 

1. To investigate the effectiveness of single linear generator for different distances in 

producing electrical voltage. 

2. To investigate the effectiveness of double linear generators for different gap 

distances in producing electrical voltage. 
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1.4 Scope of Project 

The scopes of this project are as follows: 

1. To determine the best location in obtaining the highest voltage accumulation for 

single linear generator. The best location of the single linear generator was 

determined by gradually bringing the linear generator closer to the wall at the end 

of the tank which decreases the depth of water from float to tank bed. The best 

location is the location where the voltage generated is the highest among all the 

other locations. This was also tested with varying speed of wave generator. The 

number of loops of copper coils around the linear generator was fixed. 

2. To determine the best gap distance in obtaining the highest voltage accumulation 

for double linear generators. The location of linear generator closer to the wave 

generator was fixed. The linear generator closer to the wall at the end of the tank 

was moved away gradually from the fixed linear generator, starting off with a 

smaller gap distance. The best gap distance of double linear generators is when the 

electrical voltage generated is the highest. This was also tested with varying speed 

of wave generator. Both linear generators were similarly designed in terms of 

dimensions, the number of loops of copper coils, the number of magnets used, and 

the strength of the magnet used. 

  


