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ABSTRACT 

 

 

The traditional flat plate heat sink design is still mainly used in the cooling of electronic 

components. The present study aims to propose a better heat sink design under a fixed mass 

constraint of fin distribution. The numerical results of CFD simulation for flat plate heat sink 

were compared with experimental results and numerical results done by previous researchers. 

The results showed a good agreement as the percentage difference is 3.92%, which is deemed 

acceptable. Three different heat sink designs, namely Flat, Convex, and Concave, are made, 

and their average heat transfer coefficient is compared with the Flat type heat sink being the 

reference model. The flow field pattern around the fins was observed, and it was found that 

increasing the fin mass distribution towards the side where it faces the inlet air can result in 

a high rate of heat transfer.  Upon comparing the three designs, the Concave type heat sink 

has the highest average heat transfer coefficient with 26.65% better performance than the 

Flat type heat sink at ΔT =55K. On the other hand, Convex type heat sink has a reduction of 

30.33% in average heat transfer coefficient compared to the Flat type heat sink at ΔT = 55K. 

Finally, the best design of heat sink is predicted using the CCD method. The best design has 

an average heat transfer coefficient of 6.2502 W/m2K at an optimal setting of two factors: 

amplitude of wavelength and heat sink base thickness.  
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ABSTRAK 

 

 

Penggunaan reka bentuk sinki haba plat rata tradisional bersegi empat masih digunakan 

secara meluas terutamanya dalam penyejukan komponen elektronik. Kajian ini bertujuan 

untuk mencadangkan reka bentuk sinki haba yang lebih baik di bawah had berat tetap 

pengedaran sirip sinki haba. Hasil simulasi numerik CFD untuk sinki plat rata bersegi 

empat dibandingkan dengan hasil eksperimen dan hasil simulasi numerik yang dilakukan 

oleh penyelidik sebelumnya. Hasil kajian menunjukkan persetujuan yang baik kerana 

perbezaan peratusannya adalah 3.92%, yang dianggap dapat diterima. Tiga reka bentuk 

sinki haba yang berbeza, iaitu Flat, Convex, dan Concave dibuat dan kadar pemindahan 

haba mereka dibandingkan dengan sinki haba jenis Flat menjadi model rujukan. Corak 

medan aliran di sekitar sirip diperhatikan, dan didapati bahawa peningkatan amplitud sirip 

di sisi di mana ia menghadap ke udara masuk boleh menghasilkan kadar pemindahan haba 

yang tinggi. Setelah membandingkan ketiga-tiga reka bentuk, sinki haba jenis Concave 

mempunyai kadar pemindahan haba purata tertinggi dengan prestasi 26.65% lebih baik 

daripada sinki haba jenis Flat pada ΔT = 55K. Sebaliknya, pendingin haba jenis Convex 

mempunyai pengurangan 30.33% dalam kadar pemindahan haba purata berbanding sinki 

haba jenis Flat pada ΔT = 55K. Akhirnya, reka bentuk heat sink terbaik diramalkan 

menggunakan kaedah CCD. Reka bentuk terbaik mempunyai kadar pemindahan haba 

sebanyak 6.2502 W/m2K pada tetapan optimum dua faktor: amplitud panjang gelombang 

dan ketebalan dasar pendingin. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 BACKGROUND 

 

A heat sink is a heat exchanger that transfers heat passively. Heat sinks are often 

constructed of metallic pieces attached to a device that releases heat energy in order to 

dissipate that heat to a surrounding fluid and keep the device from overheating. They are 

usually paired with a fan to prevent overheating of components. They are mainly used in 

electronic components such as CPUs, GPUs, LED, RAM, etc. Heat sinks conduct heat from 

electronic devices and dissipate them through convection and radiation.  

 

Depending on heat dissipations, heat sinks can be divided into passive heat sinks, 

active heat sinks, and semi-active heat sinks. In passive heat sinks, the heat is dissipated 

through natural convection. In active heat sinks, a fan is usually paired with the heat sink 

and heat is dissipated through forced convection. The fan will spin non-stop when power is 

supplied in active heat sink. On the other hand, semi-active heat sinks work with the same 

principle with active heat sinks, but the fan will only spin when temperature of electronic 

component such as GPU is above optimal temperature. When temperature of GPU drops 

below optimal temperature, the fan will be idle.  

 

Forced air convection is a more effective solution compared to natural convection 

(Amit Shah et al., 2006). However, it is more costly due to additional parts required and it 



2 

 

also takes up more space. The preferences of heat sinks using natural convection and forced 

convection are subjective as they depend on the situation.  

 

Computational fluid dynamics (CFD) are commonly used to study the performance 

of heat sink in electronic cooling. CFD is a numerical approach that uses computers to solve 

algebraic equations. By using CFD, thermal distribution of heat sink can be simulated to find 

out the heat transfer performance which then leads to optimization of heat sink to find the 

best heat sink design. 

 

Central composite design (CCD) is a method that helps to reduce the number of 

simulations required. It uses statistical software such as Minitab to calculate optimal 

configurations for a design. CCD is able to generate a regression equation that relates the 

factors and response. From this equation, the relationship of each factor towards the response 

can be found. CCD can be considered as an optimization method to find out the best design. 

 

The importance of current work is to find out the difference in heat sink performance 

by natural convection with different geometries under the constraint of a fixed total mass of 

fin material to cool heat source using computational fluid dynamic (CFD). Then, optimal 

heat sink geometry is to be computed using central composite design (CCD).  
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1.2 PROBLEM STATEMENT 

Many experimental and numerical studies on the topic of natural convection heat 

transfer for flat type rectangular fin arrays have been done. Most of these studies were related 

to the effects of various fin geometries and temperature difference based on fin geometry on 

the natural convection heat transfer of heat sinks. However, the effect of fin mass distribution 

across the heat sink under constraints of the fixed total mass of fin material remains 

questionable due to limited reporting in the literature. Therefore, the present study aims to 

propose an efficient heat sink with a better heat transfer rate by changing the fin mass 

distribution across the heat sink under the constraint of a fixed total mass of fin material. 
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1.3 OBJECTIVES 

The objectives of this study are as follows: 

1. To study and compare the thermal distribution and performance of 3 different 

type of heat sink namely Flat, Convex and Concave by using CFD. 

2. To compute optimal configuration of heat sink geometry and dimensions using 

CCD. 

3. Use CFD simulation to verify the results from CCD and decide the final design. 

 

1.4 SCOPE OF STUDY 

The scopes of this study are: 

1. The heat sink type is of rectangular base. 

2. Flat type heat sink is a heat sink with even mass distributed. 

3. Convex type heat sink is a heat sink with more mass distributed at the inner region. 

4. Concave type heat sink is a heat sink with more mass distributed at the outer 

region. 

5. The range of temperature difference at base of heat sink is from 33K to 85K. 

 

1.5 GENERAL METHODOLOGY 

The methods required to achieve the objective of the study are listed below. 

1. Design drawing 

Drawing of heatsink design using Solidworks software. 

 

2. Simulation using CFD 

Simulation of heatsink design using Ansys Fluent software to study the thermal 

distribution and performance of the heatsink designed. 
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3. Validation 

Simulation result obtained will be compared with results obtained from previous 

researcher. 

 

4. Optimization using CCD. 

Calculation of optimal configuration geometry and dimension using Minitab 

software. 

 

5. Analysis and evaluation. 

Results obtained from CFD and CCD will be analyzed. Optimum configuration 

of heat sink will be evaluated and discussed.    
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Heat sink. 

 Heat sinks are available in a variety of shapes and dimensions. One of the most 

common shapes used is a rectangular flat plate as they are easy to be manufactured. There 

have been many studies on the performance of rectangular flat plate heat sink done by 

researchers. 

 

Figure 2.1: (a) Traditional rectangular flat plate heat sink (b) cross-fin heat sink 

(Feng et al.,2018) 

The design shown in Figure 2.1(b) can increase the overall heat transfer coefficient, which 

includes convection and radiation by 11% and convection heat transfer coefficient only by 

15% as compared to the traditional plate-fin heat sink in Figure 2.1(a) (Feng et al., 2018). 
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Ledezma and Bejan (1996) studied heat sink performance by changing array configurations 

in their study. Figure 2.2 shows the design of the heat sink studied by them. Figure 2.3 shows 

the array configuration reviewed by them. The best plate fins, according to their research, 

are those with crests slanted such that their tips face the approaching flow. 

 

Figure 2.2: Heat sink with sloped plate fins (Ledezma and Bejan, 1996) 

 

Figure 2.3: Illustration of arrays studied by Ledezma and Bejan (1996) 
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Figure 2.4: Computational domain studied by Ledezma and Bejan (1996) 

 

Kim (2012), on the other hand, studied about the performance of heat sinks under natural 

convection by varying thickness of flat plate heat sinks. When the thickness of the heat 

dissipator was permitted to increase in a direction perpendicular to the fluid flow, he found 

that the thermal resistance was lowered by up to 10%. The difference between the thermal 

resistance of heat sinks with uniform thickness diminishes as the height and heat flux 

decreases (Kim, 2012). The same principle applies to heat sinks with variable thickness. 

Figure 2.4 shows results studied by Kim (2012). 
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Figure 2.5: Comparison of geometries and thermal resistances of optimized heat sinks 

(Kim,2012) 
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Harahap & McManus (1967) studied natural convection heat transfer of horizontal 

rectangular fin arrays.  

 

Figure 2.6: Fin array configuration studied by Harahap & McManus (1967) 

The single chimney flow pattern had better heat transfer performance compared to a sliding 

chimney flow pattern from their study. They recommended that sliding chimney flow 

patterns should be avoided.  

 

Figure 2.7: Illustration of single chimney flow (Harahap & McManus, 1967) 


