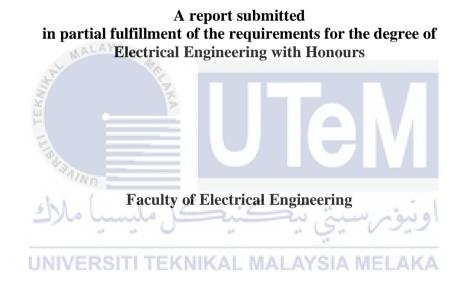
WIRELESS POWER TRANSFER DEVICE


WAN NUR MARLISA BINTI MEOR MUHAMMAD NAZRI

A project report submitted in partial fulfilment of the requirement for the award of the degree of Electrical Engineering with Honours

JULY 2021

WAN NUR MARLISA BINTI MEOR MUHAMMAD NAZRI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

JULY 2021

DECLARATION

I declare that this thesis entitled "[Title] is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	White White Arrange
Name	: Wan Nur Marlisa Binti Meor Muhammad Nazri
Date	E 5 July 2021
	اويوم سيتي يحصيكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this report entitled "Wireless Power Transfer Device" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degree of Bachelor of Electrical Engineering with Honours

DEDICATIONS

Dedicated to my supervisor, lecturers, my family and all my friends.

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to Allah SWT for His abundance of blessings throughout the process of my final year project as I able to complete the research work successfully.

I wish to thank all the individuals whose help was an achievement in the fruition of this project. In particular, I wish to express my deepest gratitude to to my project supervisor, Dr. Fairul Azhar Bin Abdul Shukor for guidance and constant supervision and also for imparting his knowledge and expertise in this study. He has taught me to put ideas, well above the level of simplicity and into something concrete.

I am also very thankful to my lecturers for giving additional knowledge during classes which are related topics to my project. Besides, I might want to perceive the priceless help, useful tips and advises from my colleagues in the completion of the project. To be able sharing information from different point of view really give an impact in project.

Any attempt at any level cannot be successfully completed without my family's unending love and encouragement to help me out despite their busy schedule and various occasions.

اونيۈم سيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

This report presents the study of the wireless power transfer device carried out for Final Year Project 2. The purpose of this project is to construct the wireless power transfer (WPT) module with different combination of winding turns of primary and secondary windings. Indeed, this project aims to design, construct and program a single phase inverter to inject variable frequency AC signal to wireless power transfer module. The main factor of this project problem is the presence of complicated, cumbersome and dangerous wires cable in certain devices and appliances used in the daily life. In the construction of WPT system, the methodology of the project is divided into design and develop a WPT device and single phase inverter. The design of the single phase inverter is divided into two part which are software and hardware development. The single phase inverter circuit and PCB layout is design and the initial part of the programming part of the system is well described. After the construction of this project, the basic principle of WPT system is being studied and applied. By conducting experiments in the laboratory, measurement data is collected and analysed. This paper describes the construction of a prototype as well as the complete schematic of the prototype. The RL characteristics of the WPT is analysed. The experiment starting with the hardware fabrication of the WPT module and the single-phase inverter. To summarize the results, it capable of constructing a wireless power transmission structure. When making the WPT module, distinct parameters are used in both the primary and secondary coils. The findings of the experiment reveal that the frequency and air gap have an impact on the inductance and resistance of the module.

ABSTRAK

Laporan ini mengemukakan kajian mengenai alat pemindahan kuasa tanpa wayar yang dijalankan untuk Projek Tahun Akhir 2. Tujuan projek ini adalah untuk membina modul pemindahan kuasa tanpa wayar (WPT) dengan kombinasi lilitan gegelung wayar primer dan sekunder yang berbeza. Jelas, projek ini bertujuan untuk merancang, membina dan memprogram penyongsang satu fasa untuk menyuntikkan isyarat AC frekuensi yang berubah-ubah ke dalam modul pemindahan kuasa tanpa wayar. Faktor utama masalah projek ini adalah adanya kabel wayar yang rumit, tidak praktikal dan berbahaya pada peranti dan peralatan tertentu yang digunakan dalam kehidupan seharian. Dalam pembinaan sistem WPT, metodologi projek dibahagikan kepada reka bentuk dan pembentukkan peranti WPT dan penyongsang satu fasa. Reka bentuk penyongsang satu fasa terbahagi kepada dua bahagian iaitu pengembangan perisian dan perkakasan. Litar penyongsang satu fasa dan susun atur PCB adalah reka bentuk dan bahagian awal bahagian pengaturcaraan sistem dijelaskan dengan baik. Selepas pembinaan projek ini, Prinsip asas sistem WPT dikaji dan diterapkan. Dengan melakukan eksperimen di makmal, data pengukuran dikumpulkan dan dianalisis. Laporan ini menjelaskan pembinaan prototaip serta skema lengkap prototaip. Ciri-ciri RL WPT dianalisis. Eksperimen dimulakan dengan pembuatan perkakasan modul WPT dan penyongsang satu fasa. Untuk meringkaskan hasilnya, ia mampu membina struktur penghantaran kuasa tanpa wayar. Semasa membuat modul WPT, parameter yang berbeza digunakan pada gegelung primer dan sekunder. Hasil eksperimen menunjukkan bahawa frekuensi dan jurang udara mempunyai kesan terhadap aruhan dan rintangan modul.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATIONS	
ACKNOWLEDGEMENTS	2
ABSTRACT	3
ABSTRAK	4
TABLE OF CONTENTS	5
LIST OF TABLES	7
LIST OF FIGURES	8
LIST OF SYMBOLS AND ABBREVIATIONS	10
LIST OF APPENDICES	11
CHAPTER 1 INTRODUCTION	13
1.1 Project background	13
1.2 Motivation	13
1.3 Problem statement 1.4 Objectives 1.5 Scope	14
1.4 Objectives	14
1.6 Thesis Outline ERSITI TEKNIKAL MALAYSIA MELAKA	14
CHAPTER 2 LITERATURE REVIEW	16
2.1 Introduction to study of Wireless Power Transfer (WPT)	16
2.1.1 Wireless power transfer method	
2.1.2 WPT Standards	
2.1.3 Advantanges and disadvantages	19
2.2 Basic principle of the Wireless Power Transfer Device	19
2.2.1 Working Principle of WPT	
2.2.2 Basic concept of WPT Module	
2.3 Single phase inverter in WPT system	
2.3.2 Component	
2.4 Microcontroller ATMEGA32	
2.4.1 Description 2.5Application of Wireless Power Transfer	24
2.6 Example of other researcher findings	
2.7 Summary	
2.7 Summury	

CHAPTER 3 METHODOLOGY	30
3.1 Introduction to Project Methodology	30
3.2 Overview of the project	30
3.2.1 Idea of The Project	30
3.2.2 Block Diagram of The System	
3.3 Design work	
3.3.1 Flowchart Overall project	
3.3.2 Flowchart of Single Phase Inverter	34
3.3.3 Circuit Connection of Single Phase Inverter	35
3.3.4 Flowchart of Programming of Single Phase Inverter	36
3.3.5 Connection of Microcontroller with Single Phase Inverter circuit	37
3.4 Design Parameter	
3.5 Summary	

CHAPTER 4 RESULTS AND DISCUSSIONS	39
4.1 Overview	
4.2 WPT module structure	39
4.3 Development of Single Phase Inverter	41
4.3.1 Schematic circuit of Single Phase Inverter	41
4.3.2 PCB layour of Single Phase Inverter	43
4.3.3 3D PCB layout of Single Phase Inverter	44
4.3.4 Fabrication of Single Phase Inverter	44
4.3.5 Block Diagram of WPT System	45
4.3.6 Implementation of WPT System	46
4.3.7 Programming of Single Phase Inverter	50
4.4 Frequency Characteristics	51
4.4.1 Experimental Setup	51
4.4.2 Measurement of Frequency Characteristics	51
4.4.3 Result of R-L Characteristics Measurement	
4.5 Summary	58
•	

CHAPTER 5 CONCLUSION AND RECOMMENDATION	59
5.1 Conclusion	59
5.2 Suggestions for future research	60
REFERENCES	61
APPENDICES	64

LIST OF TABLES

Table 2.1	The Qi's Standards for WPT	17
Table 2.2	The PMA' Standards for WPT	17
Table 2.3	ATMEGA32 features	23
Table 4.1	The parameters of Primary and Secondary Coil	40
Table 4.2	The switching state of H-bridge circuit	49
Table 4.3	The measurement data of RL characteristic for air gap 2mm	52
Table 4.2	The values of RL for different length of gap	57

LIST OF FIGURES

Figure 1.1 K-chart of Wireless Power Transfer Device Project	13
Figure 2.1 K-Chart of WPT Method	17
Figure 2.2 Block diagram of Electromagnetic Resonance	18
Figure 2.3 The transmission of electrical energy of WPT	20
Figure 2.4 The basic diagram of single phase inverter circuit	22
Figure 2.5 Microcontroller Atmega8535	22
Figure 2.6 The MOSFET IRF640	23
Figure 2.7 Integrated Circuits IR2112	23
Figure 2.8 Microcontroller ATMEGA32	24
Figure 2.9 Application of WPT system	26
Figure 2.10 Schematic circuit of impedance conversion	27
Figure 2.11 The simulation results of output voltage of load RL	27
Figure 2.12The experiment results of output voltage of load RL	28
Figure 2.13 The Class E inverter schematic circuit	28
Figure 2.14 The results of Wireless Power Transfer Using Class E Inverter	29
Figure 3.1 shows the Overview of the Project	31
Figure 3.2 The block diagram of Overall System	32
Figure 3.3 The flowchart of Overall Project Methodology	33
Figure 3.4 The flowchart of Single Phase Inverter	35
Figure 3.5 The block diagram of Single Phase Inverter connection	36
Figure 3.6 Flowchart of Programming of Single Phase Inverter	37
Figure 3.7 The microcontroller Atmega32	38
Figure 4.1 Constructed structure of WPT module	40

Figure 4.2 f Single Phase Inverter schematic circuit	41
Figure 4.3 Labelled diagram of Single Phase Inverter circuit	42
Figure 4.4 The PCB layout of Single Phase Inverter	43
Figure 4.5 3D PCB layout	44
Figure 4.6 Fabricated PCB board of Single Phase Inverter	44
Figure 4.7 Soldering equipment for PCB board	45
Figure 4.8 Block diagram of WPT System	45
Figure 4.9 Schematic circuit for programming part	46
Figure 4.10 Schematic circuit for processing part	47
Figure 4.11 Schematic circuit for Gate Drive part	48
Figure 4.12 Schematic circuit for H-bridge inverter part	48
Figure 4.13 H-bridge Inverter schematic diagram	49
Figure 4.14 Single Phase Inverter Coding	50
Figure 4.15 Experiment setup WPT module coil with LCR meter	51
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
Figure 4.16 R-L characteristics of WPT module at 2mm gap	53
Figure 4.17 R-L characteristics of WPT module at 3mm gap	53
Figure 4.18 R-L characteristics of WPT module at 4mm gap	54
Figure 4.19 R-L characteristics of WPT module at 5mm gap	54

55

Figure 4.22 R-L characteristics secondary coil of WPT module at 10kHz 57
--

LIST OF SYMBOLS AND ABBREVIATIONS

WPT	-	Wireless Power Transfer
PCB	-	Printed Circuit Board
MOSFET	-	Metal Oxide Semiconductor Field Effect Transistor
PMA	-	Power Matters Alliance
IGBT	-	Insulated-gate bipolar transistor
MCU	-	Microcontroller Unit
XTAL	-	Crystal
IC	-	Integrated circuit

LIST OF APPENDICES

A.1 Project Gantt Chartt

A.2 Reference coding

A.3 PCB Layout Design

64

63

A.4 Table measurement data of RL characteristics for air gap 2mm

64

65

65

A.5 Table measurement data of RL characteristics for air gap 3mm

A.6 Table measurement data of RL characteristics for air gap 4mm

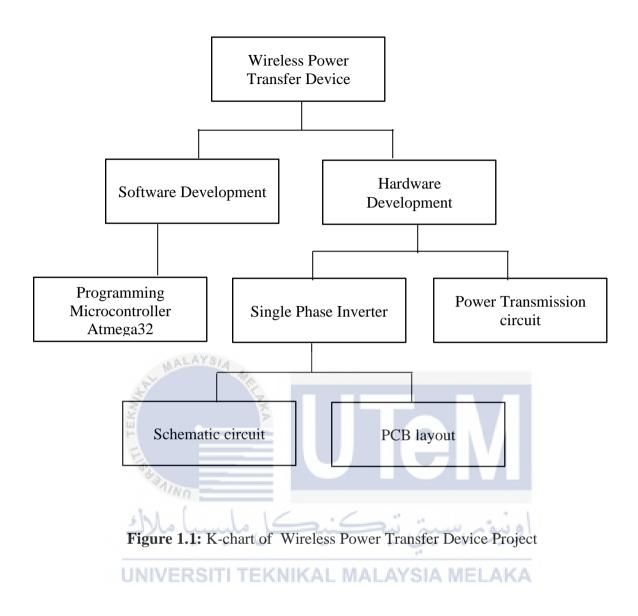
A.7 Table measurement data of RL characteristics for air gap 5mm

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

63

CHAPTER 1

INTRODUCTION


1.1 Project Background

Interest in this area has recently resurfaced, largely due to the introduction of mobile electronic devices that are constantly on the move and need to be charged regularly. WPT can be described as a means of transmitting electrical energy from a power source to an electrical system without cable conductors. WPT is, in the simplest terms, the transfer of energy between two objects, without wires or cables.

American physicist Nikola Tesla invented the idea of wireless power transfer, and his initial patent on the matter was granted over 100 years ago. [1] Tesla also conducted successful experiments to wirelessly transfer electricity, using the technology to successfully light wireless light bulbs.

The aim of this project is to analyse and research the technologies and physics behind wireless power transfer. The initial attempt to investigate the WPT in order to keep up with the rapidly growing industry and to evaluate the industry's current needs and solutions. The basic wireless power transmission system, the transmitter circuit and the receiver circuit, is divided into two parts. It utilises the process of inductive coupling to wirelessly transfer electricity.

In addition, the design of PCB, assembly and testing, and the development of original prototypes were the main objectives. The primary coil, series resonant capacitor, and DC to AC inverter are included in the power transmitter circuit. The inverter is utilized between two coils for magnetic field induction. A secondary coil, a parallel resonant capacitor and an AC to DC converter are found in the power receiver circuit. From the figure 1.1, it shows the K-chart of WPT device project. The k-chart illustrated the overflow of the project which is divided into two parts, software and hardware development.

1.2 Motivation

The motivation for wireless power comes from wires being bulky and messy. The idea of wireless power is nothing new but this idea in today's world of rapid technological development, WPT considers more prominent spatial opportunity between the power source and the gadget. Hence, implementation of WPT method spur new roads of research in various applications to add convenience in so many aspects.

1.3 Problem Statement

The main problem is the connecting wires in the most of devices application make it difficult for users to deal with when there is mislaid of wires happened and it also limits the portability of device. Because of this disability, WPT device system was built. The first problem statement is wireless power transfer is helpful for connecting wiresto electrical devices that are bulky, unsafe or impossible. With wireless power transfer, the need for cables is eliminated. Besides, in general, power transmitted in AC. the WPT scheme ought to consequently be incorporated with DC to AC power, accompanied by energy transmission. Lastly, the transmission efficiency of WPT depend on the distance. Decreased efficiency with increased distance.

1.4 Objective CALAYS

The objectives of this project are:

- i. To construct the wireless power transfer module with different combination of winding turns of primary and secondary windings.
- ii. To design, construct and program a single phase inverter to inject variable frequency AC signal to wireless power transfer module. ALAYSIA MELAKA
- iii. To analyze performance and characteristics of the wireless power transfer module.

1.5 Scope

This project study limits into 3 main parts which are wireless power transfer module, single phase inverter and performance measurement. The wireless power transfer module uses ferrite based core and has two windings which are primary and secondary. The windings are self-created. Besides, the single phase inverter part consist of design of single phase invertert PCB layout, fabrication of PCB board and component assembly of single phase inverter. In the performance measurement, the frequency range of inverter is set between 100Hz -1kHz depends on the capability of the microcontroller Atmega32. Furthermore, the measurement

of air gap is set between 2mm to 5mm between two cores. The voltage and the R-L characteristics measurements are calculated for primary and secondary windings.

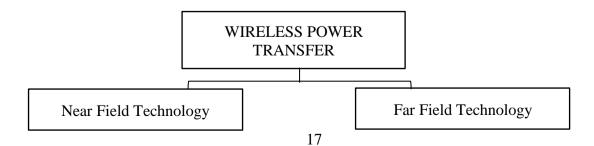
1.6 Thesis outline

This outline is divided into five chapters to provide better understanding of the whole project. The first chapter, which contains the introduction, covers the project outline, problem statement, project goals and scope of the project for the Wireless Power Transfer System. In chapter 2, discusses fundamental project theory, the system fundamentals, and provides past studies relevant to the project subject.

Meanwhile, Chapter 3 includes the proper procedure in designing, relevant experimental method and descriptive techniques used in the WPT project. It provide details explanation of the flow of methodology is and flowchart is illustrated to give a better understanding. Furthermore, in chapter 4, the result of all project development is presented. It provide comprehensive discussion related to preliminary result obtained and also implications of the findings of the project undertaken. Lastly, chapter 5 covers the conclusions of the preliminary result drawn and future work is recommended.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2


LITERATURE REVIEW

2.1 Introduction to study of Wireless Power Transfer (WPT)

This chapter overview the concept of the wireless power transfer device.WPT system is being implemented in many devices work and application. Thus, in this chapter cover the type and the basic principle of the software and hardware parts of the system. Moreover, the classification ,techniques and technologies of WPT are also being described. Besides, this chapter also provides details description of a few components that are being used in the project.

2.1.1 Wireless power transfer (WPT) method

There are plenty of techniques to transmit power without any direct physical contacts. In this project, it will be focusing on the electromagnetic induction in the Near Field Technology. Near field technology is a non radiative method to transfer power. It is a technology which can perform transmission of energy by using wires coils. Figure 2.1 shows the different types of WPT methods that has been used in various technology. Basically the classification is based on the possible distance power can travel.

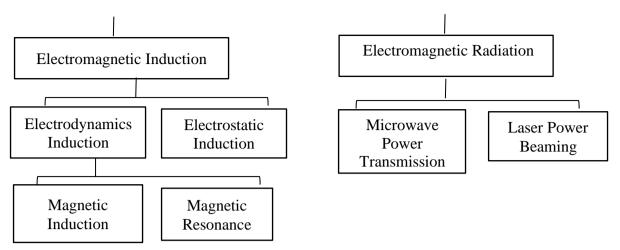
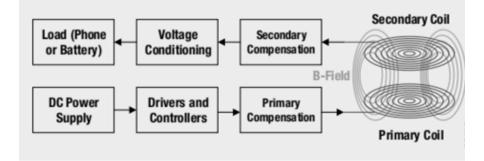



Figure 2.1 K-Chart of WPT Method

Both electromagnetic induction and magnetic resonance involved magnetic field coupling. In the magnetic induction, when wire wind with a coil, the magnetic field is generated. The more the number of windings the higher the strength of magnetic field produced. In the electromagnetic process, a permanent magnet may also be placed. The electromagnetic induction mechanism occurred when it was possible to generate voltage by altering the magnetic field or moving the coils.

Whereas, in the electromagnetic resonance, the higher the current in the primary side, the higher the voltage induced in secondary part. Figure 2.2 shows the block diagram of Electromagnetic Resonance. It started with the DC power that is supply into the driver and controllers. Then, it is carried into the primary compensation and secondary compensation of the coil. The power is then undergoes voltage conditioning and then will be transmitted into load of any devices or battery.

2.1.2 Wireless power transfer standards

Qi is a specification of an open interface that defines wireless control by inductive charging, switch over distances up to 4 cm. Table 2.1 shows the Qi's standards for WPT. It is classified into technology, power and frequency.

Technology- Inductive, Resonant	Low Frequency
Power	5W-15W
	Qi Cordless kitchen appliances: 100W- 2.4kW
Frequency	110 - 205kHz

Table 2.1: The Qi's Standards for WPT [2]

Based on Power Matters Alliance (PMA)'s standards a suite of interface specifications for smart and energy-efficient wireless power transfer are formulated and advanced. In order to provide advanced inductive and resonant control, the PMA effectively distributed a set-up of guidelines based on inductive coupling innovation. Table 2.2 shows the classification of PMA's standards for WPT devices. The range of power and frequency for PMA's standards is large compared to Qi standards. Nevertheless, both standards applicable for WPT.

Table 2.2 : The PMA' Standards for WPT

Technology- Inductive, Resonant	High Frequency
Power	3.5W - 50W
Frequency	277 -357kHz

2.1.3 Advantages and Disadvantages of WPT

There are a few advantages and disadvantages of the WPT system. One of the advantages of the WPT is it has a simple design. Besides, WPT can eliminates the existing system that using interconnecting wires which is troublesome and inefficient. Moreover, for everyday applications, the cost of transmission and receiving of the system will be

lower. In term of portability, in the absent of wires or cables, the device which uses the WPT system is very superior compared to other system. Furthermore, Power failures minimization causes by short circuit and faults could be achieved. [3].

The disadvantages of the WPT is the radiation level accomplished by the WPT is close or somewhat higher than the radiation of mobile phones. [4] Besides, the transmission of the system is inefficient for long distance. Moreover, initial expense for functional installation of the system is quite high. In addition, interference could possibly happened to interrupt the transmission of power and signal to the load. Lastly, compared to direct touch, the wireless transfer of power could increase resistive heating. [5].

2.2 Basic principle of the Wireless Power Transfer Device

WPT system can be defined as power transmission from one source to an electrical charge without any interconnecting wires or cables. WPT allows power to be supplied through an air gap without any wires or cable. Depending on strength and space, energy may be effectively transmitted by an electric field, magnetic field, or electromagnetic (EM) waves. e.g. radio, microwave, or even light waves. Figure 2.3 shows the basic diagram for the transmission of electrical energy of WPT. In general, the transmission of energy in WPT started with a power supply injected into two main parts, transmitter and receriver before being transfered to the load.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

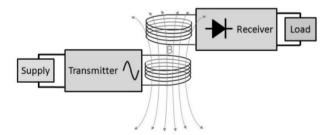


Figure 2.3: The transmission of electrical energy of WPT

2.2.1 Working principle of WPT

Wireless power transfer works on the inductivepower transfer principle, as discovered in conventional transformers. The main difference being that while the two coils are