VIBRATION CONTROL FOR A GANTRY CRANE SYSTEM USING INPUT SHAPING

2021

VIBRATION CONTROL FOR A GANTRY CRANE SYSTEM USING INPUT SHAPING

SYAZWANI BINTI JAMIDAN

A report submitted in partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this report entitle "Vibration Control for a Gantry Crane System Using Input Shaping" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

"I hereby declare that I have read through this report entitle "Vibration Control for a Gantry Crane System Using Input Shaping" and in my opinion, this thesis it complies the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering.

Signature

ZZUAN BIN JAAFAR : TS. DR ٦Ū

2

: <u>5 JULY</u>

Supervisor Name Date

DEDICATIONS

To my beloved mother and father

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to the God for giving the strength and health to complete the project successfully. There are many people whom I acknowledge for their support and encouragement during the journey of making this project.

I would like to express my deep and sincere gratitude to my project supervisor, Ts. Dr. Hazriq Izzuan Bin Jaafar for his supervision, advice and providing invaluable guidance from the first stage of this project as clearly as possible and giving me experiences throughout the project. I would also like to thank him for providing me an encouragement and support in many ways. His dynamism, vision, sincerity, and motivation have deeply inspired me.

Next, I am extremely grateful to my family members especially my parents whom I am greatly indebted for their love, understanding, guidance and continuing support in no matter whatever I pursue.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I thank many people such as my fellow classmates and friends for valuable comments, ideas and suggestions on this project which gave me an inspiration to work on it and improve my project for a better result. I thank all the people for their help directly or indirectly to complete my project.

ABSTRACT

This project proposes the implementation of vibration control using input shaping control schemes for a Gantry Crane System (GCS). Two types of input shaping controllers, which are Zero Vibration and Zero Vibration Derivatives are applied to control the vibration. The model of a nonlinear GCS is employed by using Lagrange technique. The effectiveness of the proposed control controllers are verified by using Simulink/Matlab to observe the controller and system performances. This project is divided into two stages, which are Stage 1 is to observe the behavior of the system. The behavior of the system is observed by varying the value for input voltage, payload mass and cable length. Meanwhile, Stage 2 is focused on implementation of input shaping control schemes namely ZV and ZVD for vibration control of the GCS. The behavior of the system implemented with input shaping is compared with an uncontrolled GCS. Then, the dynamic behaviour is observed by varying value for input voltage, payload mass and cable length.

اونيۈم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Projek ini mencadangkan pelaksanaan kawalan getaran menggunakan kawalan pembentukan masukan untuk Sistem Kren Gantri (SKG). Terdapat dua jenis pengawal pembentukan data iaitu Getaran Sifar dan Pembezaan Getaran Sifar digunakan untuk mengawal getaran. SKG jenis tidak linear digunakan dengan menggunakan teknik *Lagrange*. Keberkesanan pengawal yang dicadangkan diuji dengan menggunakan *Simulink/Matlab* untuk memerhati prestasi pengawal dan sistem. Projek ini dibahagikan kepada dua tahap, iaitu Tahap 1 untuk memerhati tingkah laku sistem. Prestasi sistem diperhatikan dengan mempelbagaikan nilai pada voltan input, jisim muatan dan panjang kabel. Sementara itu, Tahap 2 memfokuskan pada penggunaan skema kawalan pembentukan data bagi mengawal getaran pada SKG. Prestasi sistem yang dilaksanakan dengan pengawal pembentukan data dibandingkan dengan SKG tanpa kawalan. Seterusnya, ia diperhatikan dengan mempelbagaikan nilai untuk voltan masukan, jisim muatan dan panjang kabel.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENT

TITLE

PAGE

DEC	LARATION		
APPI	APPROVAL		
DED	ICATIONS		
ACK	ACKNOWI EDCEMENT		
ACK			
ABS	ΓRACT		
ABS	ГКАК		
TAB	LE OF CONTENT		
LIST	OF TABLES		
LIST	OF FIGURES		
LIST	OF ABBREVIATIONS		
LIST	OF SYMBOL		
LIST	OF APPENDICES		
CHA	PTER 1 INTRODUCTION		
1.0	Overview		
1.1	Introduction		
1 2	1.1.1 Gantry Crane System (GCS)		
1.2	Problem Statement		
1.4	Objectives		
1.5	Scopes		
1.6	Report Outlines		
CHA	APTER 2 LITERATUE REVIEW		
2.0	Overview		
2.1	Introduction		
2.2	Open-Loop Technique		
2.3	Input Shaping Control Schemes		
2.4	ZV and ZVD Shapers		
2.5	Conclusions		

СНАРТ	'ER 3	METHODOLOGY	15
3.0	Overview		15
3.1	Flowchart		15
3.2	Model of a Nor	nlinear GCS	17
3.3	Derivation Ma	thematical Expression for Modelling of a GCS	18
3.4	Implementation	n of a Nonlinear GCS by using Simulink	22
3.5	Simulation Mo	del of a Nonlinear GCS without controller	23
3.6	Design of Sim	ulink block of a Nonlinear GCS to determine	25
	natural freque	ncy, ω_n and damping ratio, ζ for input shaping	
3.7	Design of Sim	ulink block diagram of a Nonlinear GCS with	30
	ZV input shap	er	
3.8	Design of Sim	ulink block diagram of a Nonlinear GCS with	31
	ZVD input sha	aper	
	1	1	31
СНАРТ	ER 4	RESULTS AND DISCUSSIONS	32
4.0	Overview		32
4.1	Simulation Mo	del of Nonlinear GCS	32
4.2	Simulation Mo	del of a Nonlinear GCS Without Controller	34
4.3	Simulation Mo	del of a Nonlinear GCS Without Controller	34
-	With Variation	n Value of Parameter	-
4.4	Simulation Mo	del of a Nonlinear GCS With ZV and ZVD	37
	Input Shapers		
4.5	Simulation Mo	del of a Nonlinear GCS With ZV Input	39
	Shaper With V	Variation Value of Parameter	
4.6	Simulation Mo	del of a Nonlinear GCS With ZVD Input	41
	Shaper With V	Variation Value of Parameter	
4.7	Simulation Mo	del of a Nonlinear GCS With ZV and With	43
,	ZVD Input Sh	aping With Variation Value of Input Voltage	
4.8	Simulation Mo	del of a Nonlinear GCS With ZV and With	45
	ZVD Input Sh	aping With Variation Value of Payload Mass	
4.9	Simulation Mo	del of a Nonlinear GCS With ZV and With	47
,	ZVD Input Sh	aping With Variation Value of Cable Length	
	_ · _ · _ · _ · _ · · · · ·		
CHAP	TER 5	CONCLUSIONS	49
5.0	Overview		49
5.1	Conclusions		49
5.2	Future Works		50
			2.5
REFER	ENCES		51
ADDEN	DICES		51
	DICES		34

LIST OF TABLES

	TITLE	PAGE
Table 3.1	System Parameters	17
Table 3.2	Various value tested for three different parameter for a nonlinear GCS without controller	23
Table 4.1	Comparison of peak-to-peak sway for a nonlinear GCS for various value of input voltage	36
Table 4.2	Comparison of peak-to-peak sway for a nonlinear GCS for various value of payload mass	37
Table 4.3	Comparison of peak-to-peak sway for a nonlinear GCS for various value of cable length	38
Table 4.4	Comparison of vibration suppression between output response for a nonlinear GCS without controller, GCS with ZV input shaper and ZVD input shaper	39
Table 4.5	Comparison of peak-to-peak sway for GCS with ZV input shaping and GCS with ZVD input shaping for various value of input voltage	45
Table 4.6	Comparison of peak-to-peak sway for GCS with ZV input shaping and GCS with ZVD input shaping for various value of payload mass	47
Table 4.7	Comparison of peak-to-peak sway for GCS with ZV input shaping and GCS with ZVD input shaping for various value of cable length	49
	اونيوم سيتي تيكنيكل مليسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

	TITLE	PAGE
Figure 1.1	Types of Cranes	2
Figure 1.2	Example of GCS	3
Figure 1.3	An accident involving crane	5
Figure 2.1	Scopes of literature review	8
Figure 2.2	Open-loop technique used with input shaping	11
Figure 2.3	Illustrations of input shaping technique configuration	12
Figure 3.1	Flowchart of the overall project	16
Figure 3.2	Schematic diagram of a GCS	17
Figure 3.3	Illustration for finding velocity	18
Figure 3.4	DC motor	21
Figure 3.5	The Simulink block diagram of a nonlinear GCS without controller	23
Figure 3.6	Block parameter with initial value of parameter	24
Figure 3.7	Bang-bang input	24
Figure 3.8	The Simulink block diagram for a nonlinear GCS to	25
Figure 3.9	determine \mathcal{O}_n and ζ The curve fitting toolbox output for determining the value	26
Figure 3.10	for ω_n The curve fitting toolbox output for determining the value	27
Figure 3.11	for ζ The Simulink block diagram for a nonlinear GCS with ZV input shaper	30
Figure 3.12	Zero Vibration (ZV) subsystem simulink block	30
Figure 3.13	The Simulink block diagram for a nonlinear GCS with ZVD input shaper	31
Figure 3.14	Zero Vibration Derivative (ZVD) subsystem simulink block	31
Figure 4.1	Schematic diagram of a Nonlinear GCS	32
Figure 4.2	Simulink block for subsystem of a GCS	33
Figure 4.3	Output Response of Oscillation for a nonlinear GCS with initial parameter settings	34
Figure 4.4	Output Response of Oscillation for a nonlinear GCS with various value of input voltage	34
Figure 4.5	Output Response of Oscillation for a nonlinear GCS with various value of payload mass	35
Figure 4.6	Output Response of Oscillation for a nonlinear GCS with various value of cable length	36

Figure 4.7	Comparison between output response for sway angle in rad for a nonlinear GCS and GCS with both ZV and ZVD input shaping	37
Figure 4.8	Output Response of Oscillation for a nonlinear GCS with ZV input shaping with various value of input voltage	39
Figure 4.9	Output Response of Oscillation for a nonlinear GCS with ZV input shaping with various value of payload mass	40
Figure 4.10	Output Response of Oscillation for a nonlinear GCS with ZV input shaping with various value of cable length	40
Figure 4.11	Output Response of Oscillation for a nonlinear GCS with ZVD input shaping with various value of input voltage	41
Figure 4.12	Output Response of Oscillation for a nonlinear GCS with ZVD input shaping with various value of payload mass	42
Figure 4.13	Output Response of Oscillation for a nonlinear GCS with ZVD input shaping with various value of cable length	42
Figure 4.14	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 5V	43
Figure 4.15	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 10V	43
Figure 4.16	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 15V	44
Figure 4.17	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 1kg	45
Figure 4.18	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 5kg	45
Figure 4.19	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 15kg	46
Figure 4.20	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 0.75m	47
Figure 4.21	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 1.75m	47
Figure 4.22	Output Response of Oscillation for a nonlinear GCS with ZV and ZVD input shaping for 2.75m	48

LIST OF ABBREVIATIONS

- DFS Delay Feedback Signal
- GCS Gantry Crane System
- LQR Linear Quadratic Controller
- PD Proportional and Derivative Controller
- PFS Priority-based Fitness Scheme
- PID Proportional, Integral and Derivative Controller
- PSO Particle Swarm Optimization
- SMC Sliding Mode Controller
- ZV Zero Vibration
- ZVD Zero Vibration Derivatives
- ZVDD Zero Vibration Derivatives-Derivatives

LIST OF SYMBOLS

x	-	Trolley Position
θ_l	-	Payload Oscillation
m_1	-	Payload Mass
m_2	-	Trolley Mass
L	-	Cable Length
g	-	Gravity Acceleration
\tilde{F}	-	Force Input
kg	-	Kilogram (Mass unit)
m	-	Meter (Distance unit)
V	-	Velocity
Т	-	Kinetic Energy
Р	-	Potential Energy
В	-	Damping Coefficient
K_T	-	Torque Constant
K_E	-	Electric Constant
Ζ	-	Gear Ratio
rp	-	Radius of Pulley
ω_n	-	Natural Frequency
ζ	-	Damping Ratio
ω_d	-	Damped Natural Frequency
ĸ	-	Stiffness Constant
A_i	-	Amplitudes
T_i	-	Time Locations
		AINU -
		كنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDIX

TITLE

APPENDIX A GANTT CHART

53

CHAPTER 1

INTRODUCTION

1.0 Overview

This section provides a short explanation of the project. Descriptions and introductions about Gantry Crane System (GCS) is explained. This chapter will clearly explain the problem statements, objectives, scopes, motivation, and the project outlines for the overall project.

1.1 Introduction

A crane system has been a part of the laboring background since its creation back in time during ancient Greece. It is still counted as a crucial part of equipment for heavy production work and lifting loads chores. The crane is equipped with cables and pulleys. Based on the application of basic mechanical rules, it is stated that a crane can raise and drop weights well enough beyond the capabilities of the construction laborers. The purpose of monitoring a crane is to move the weights quickly with no producing too much sway at the desired point. Nevertheless, nearly all crane produces a sway movement when payload is immediately stopped after a rapid movement.

The crane model has established to meet the requirement of a variety of manufacturing requests to accomplish complex lifting tasks. Various categories of cranes are used in construction and manufacturing are tower crane, mobile crane, telescopic crane, giant cantilever crane, level-luffing crane, crawler crane, aerial crane, and gantry crane.

a) Tower Crane

b) Mobile Crane

c) Telescopic Crane

f) Crawler Crane

g) Aerial Crane

h) Gantry Crane

Figure 1.1: Types of Cranes

Most of the crane types are operated by electric motors, hydraulic power, or an inner combustion engine. However, we can look ahead to see improvements in how cranes are operated in the future because of rapid modifications in technology. To work effectively and retain its vital stability, each form of crane should fulfil the laws of physics. Two main things that need to be considered in this aspect are that the crane must not transfer loads which beyond its own capability, and that every stressful motion going on exceed the machine's designated plane of operation should be extinguish wherever possible. A crane is considered running and capable to raise weights as the weight is balanced by counterbalances which stabilize the crane, letting crane to raise and shift its burdens. Various forms of crane nowadays have a variety of various features and capabilities. Some of the familiar elements in crane are usually considered when buying, are lifting capacity, lifting angle, swing angle, working radius, mobility, weight, dimensions, and setup time.

1.1.1 Gantry Crane System (GCS)

In our everyday life, the capability of person is very restricted and cause troubles in managing with massive supplies. To overcome this issue, heavy equipment is required to accomplish the chore. These days, complex technology make up GCS as some of the best heavy machinery in the construction, manufacturing, or shipping as shown in Figure 1.2. GCS are normally operated in loads carrying system in construction, manufacturing, shipping and nuclear resources where heavy weights must be transferred with great accuracy. The trolley is constructed on the upper section of GCS to shift and lift weights either to the right or to the left alongside the horizontal bridge rail by using the hoist. While the bridge is firmly stand by two or more legs shifting on permanent rails or any path.

Figure 1.2: Example of GCS

However, the crane acceleration necessary for mobility and continuously causes unwanted swing motion. This inescapable often swing motion leads to effectiveness reduction, overload damages and yet crashes. It is preferable to relocate the trolley to a desired spot quicker with reduce swing motion [1]. At greater acceleration, these swing angles turn out to be bigger, causes the payload unable to unload. Hence, to unload until the payload stop from swaying, a longer time is needed [3].

To shift the GCS to the desired location, a control mechanism that practically useful for trolley position and payload oscillation is needed. Due to this, specialists and skillful operators need to prevent the swing and shift the trolley to the desired spot manually. The vibration in the trolley and payload would be hazardous if heavy burdens are increasing. Therefore, load swing should be reduced in vibration and stop as fast as possible to maximize the operations [6]. Hence, Simulink is used for simulation to observe the output response of input shaping to the vibration control for the GCS.

1.2 Motivation

Construction of high-rise structures, huge scale apartment blocks, or construction in city are highly needed usage of cranes. In the construction industry, the usage of crane is common and very crucial regardless of the scope of the project. Cranes normally use cable and pulley to transport a mechanical gain when it is needed to lift heavy burdens. The crane operator is in charge person for monitoring the crane and obey the protection procedures. Life loss, injury, and property damage are the consequences that will happen if the crane maintenance requirements and operations are not properly performed. As the results, crane accident happened annually.

The latest incident happened on 22nd March 2021, at Alam Damai. Three foreign workers dead and one road user has been injured after a construction crane fell along the Sungai Besi-Ulu Kelang Elevated Expressway (SUKE) [18].

Figure 1.3: An accident involving crane [18]

Previous incidents that happened in Malaysia:

September 19, 2020: A woman had a nearly-death experience when a part of the tower crane knocked into two telephone poles, causing them to collapse onto the road and hit her car at Jalan SS2/24 in Petaling Jaya [19].

August 5, 2020: A crane driver, 28, endured a fracture after being stuck under a crane that had fallen over in Alam Damai, Cheras [20]. MALAYSIA MELAKA

July 20, 2020: A foreign employee, 35, was buried alive at a construction site in Kota Damansara [21].

March 5, 2020: Two foreign labors were murdered when they were buried by mounds of falling earth at a construction site in Temerloh, Pahang [22].

February 14, 2020: The condominium project in Taman Desa, Kuala Lumpur partially collapsed after heavy rain [23].

December 13, 2019: A chain construction crane collapsed at a condominium construction site in Bandar Baru Sentul, Kuala Lumpur [24].

1.3 Problem Statement

Problem statements are listed as below:

- i. Difficult in controlling the payload oscillation for a GCS.
- ii. At greater speed, the sway angle become bigger. Hence, a long duration is required to unload until the oscillation stop.
- iii. Need an experience and expert operator.

1.4 Objectives

Objectives for this proposed study are:

- i. To study the dynamic GCS with various input voltage, payload mass, and cable length.
- ii. To design and evaluate the system by using input shaping control schemes to reduce the payload oscillation.
- iii. To analyse and verify the effectiveness of Zero Vibration (ZV) and Zero Vibration Derivative (ZVD) control schemes.

1.5 Scopes

To achieve the objectives, the scopes of the projects are: /SIA MELAKA

i. Modelling mathematical expressions of the GCS by using Lagrange technique.

ي تيڪنيد

- ii. Simulink/Matlab is used for simulation executions.
- iii. Implement ZV and ZVD as the input shapers.

alun

- iv. The input voltage used for this project are 5 V, 10 V, and 15 V.
- v. The payload mass used are 1 kg, 5 kg, and 15 kg.
- vi. The cable length used for this project are 0.75 m, 1.75 m, and 2.75 m.

1.6 Report Outlines

The report outlines are stated as below:

Chapter 1 Introduction

It consists of introduction regarding the GCS, motivation, purpose, scopes, and problem statement of project.

Chapter 2 Literature Review

Contain summary about the GCS based on some journal paper and thesis from researcher.

Chapter 3 Methodology

Detail explanation for the project taken from another researcher model. The derivation for mathematical expression is shown. Brief explanation of the methodology for this project also are well stated in this chapter.

Chapter 4 Results and Discussions

Display results of the project. Proves that the project either produced the desired outcomes or not based on the methodology and technique proposed earlier.

Chapter 5 Conclusion and Recommendation

This last section makes a conclusion and summarize the result of the project and make a recommendation for the improvisation purpose.

CHAPTER 2

LITERATURE REVIEW

2.0 Overview

This section reviews the study on the innovation of the GCS such as the field of study and modes of controller used for this system. In order to develop the controller for vibration control for the GCS, the proposed tuning method has been investigated. Some research for an approached method for input shaping control schemes such as ZV and ZVD are discussed in this chapter. Outline for this entire section is displayed in the Figure 2.1.

Figure 2.1: Scopes of literature review