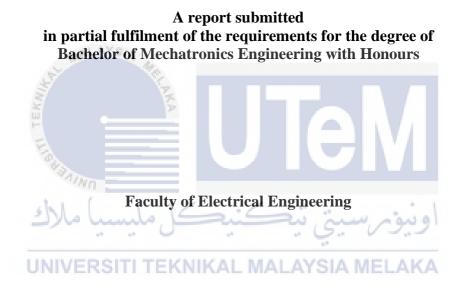
OPTIMUM TRAJECTORY PATH OF ROBOTIC MANIPULATORFOR TRIMMING PROCESS OF CARBON FIBRE REINFORCEDPOLYMER (CFRP) BASED PRODUCT


MUHAMMAD REDHA MUBARAK BIN KHAIRUL ANUAR

UNIVERSITI TEKNIKAL MALAYSIA MELAKA BACHELOR OF MECHATRONICS ENGINEERING WITHHONOURS UNIVERSITI TEKNIKAL MALAYSIA MELAKA

OPTIMUM TRAJECTORY PATH OF ROBOTIC MANIPULATOR FOR TRIMMING PROCESS OF CARBON FIBRE REINFORCED POLYMER (CFRP) BASED PRODUCT

MUHAMMAD REDHA MUBARAK BIN KHAIRUL ANUAR

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "OPTIMUM TRAJECTORY PATH OF ROBOTIC MANIPULATOR FOR TRIMMING PROCESS OF CARBON FIBRE REINFORCED POLYMER (CFRP) BASED PRODUCT" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this report entitled "OPTIMUM TRAJECTORY PATH OF ROBOTIC MANIPULATOR FOR TRIMMING PROCESS OF CARBON FIBRE REINFORCED POLYMER (CFRP) BASED PRODUCT" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degreeof Bachelor of Mechatronics Engineering with Honours

	R
Signature	- Fronce
Supervisor Nan	e · · Mohd Khairi bin Mohamed Nor
Date Yat	5th July 2021
1118	
الح	اونيۈم,سيتي تيكنيكل مليسيا ملا
UN	IVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATIONS

To my beloved family

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my greatest gratitude to the Almighty for his blessings in completing my final year project successfully. The success and final outcome of this project required a lot of guidance and assistance from multiple individuals and I am extremely privileged to have got this all along the completion of my project.

I would like to express my sincere appreciation and deepest gratitude to my supervisor, Dr Mohd Khairi Bin Mohamed Nor, for his excellent guidance, caring, patience, providing me suggestion, tips, continuous guidance and motivation towards me during completing my final year project. I am very thankful to my panels, Dr. Wan Mohd Bukhari bin Wan Daud and Dr Mohd Rusdy bin Yaacob for their guidance, critics and advices.

I owe my deep gratitude to our FYP coordinators, Dr. Nurdiana Binti who guided us all along by providing all the necessary information for developing a goodthesis.

Thanks to all my friends, those who always help and give their best suggestions and advices. Special thanks to my parents for their non-stop support and keep motivate me. Last but not least, thank you to Universiti Teknikal MalaysiaMelaka (UTeM) for giving me the chance to finish my Final Year Project by providing necessary facilities to assist me in completing this project.

ABSTRACT

The focus is to automate the trimming process of Carbon Fibre Reinforced Polymer (CFRP) based product. Trimming is a process of cutting off unwanted parts. It improves the composite in terms of appearance and surface finish for installation of the product. Until now, the trimming process of this product is done manually by workers. This report focused on investigating the optimum trajectory path for the robotic manipulator to accomplish the trimming task. In order to imitate the real task, a CFRP wing part model is developed in Autodesk Fusion 360 software for simulation purposes. The path will then extracted based on the three-dimension model. The problem in this project is how to obtain the optimum trajectory path for the robotic manipulator to perform the trimming task. Based on the problem statements mentioned above, there are three objectives that need to be achieved which are; to identify the trajectory path for the robotic manipulator end effector, design a controller for the robotic manipulator to follow the desired path, and evaluate the controller performance based on standard specifications. Six-degrees of freedom UR10 robotic arm is appropriately selected for the trajectory simulation. The proposed idea to accomplish the objectives of this project are by first creating the path based on the shape of the 3-Dimension model as waypoints. By using Coppeliasim robotic simulator, the kinematics of the robotic manipulator will be monitored to obtain the optimum trajectory path to ensure the efficiency of the trimming task simulation. For the analysis, there will be paths with different number of waypoints that assigned as a group of targets in order to observe the efficiency of the trajectory method.

ABSTRAK

Fokus projek ini adalah untuk mengautomasikan proses pemangkasan produk berasaskan Carbon Fiber Reinforced Polymer (CFRP). Pemangkasan adalah proses memotong bahagian yang tidak diingini. Ia meningkatkan komposit dari segi penampilan dan kemasan permukaan untuk pemasangan produk. Sehingga kini, proses pemangkasan produk ini dilakukan secara manual oleh pekerja. Laporan ini memfokuskan pada penyelidikan jalan lintasan optimum bagi manipulator robot untuk menyelesaikan tugas pemangkasan. Untuk meniru tugas sebenar, model bahagian sayap CFRP dikembangkan dalam perisian Autodesk Fusion 360 untuk tujuan simulasi. Laluan kemudian akan dibuat berdasarkan model tiga dimensi. Masalah dalam projek ini adalah bagaimana mendapatkan jalan lintasan optimum agar manipulator robot melakukan tugas pemangkasan. Berdasarkan pernyataan masalah yang disebutkan di atas, terdapat tiga objektif yang perlu dicapai iaitu; untuk mengenal pasti lintasan lintasan untuk pengesan akhir manipulator robot, merancang pengawal untuk manipulator robot untuk mengikuti jalan yang diingini, dan menilai prestasi pengawal berdasarkan spesifikasi standard. Enam darjah kebebasan lengan robot UR10 dipilih dengan tepat untuk simulasi lintasan. Idea yang dicadangkan untuk mencapai objektif projek ini adalah dengan terlebih dahulu membuat jalan berdasarkan bentuk model 3- Dimensi sebagai titik jalan. Dengan menggunakan simulator robot Coppeliasim, kinematik manipulator robot akan dipantau untuk mendapatkan jalan lintasan optimum untuk memastikan kecekapan simulasi tugas pemangkasan. Untuk analisis, akan ada jalan dengan jumlah titik jalan yang berlainan yang ditetapkan sebagai sekumpulan sasaran untuk memerhatikan kecekapan kaedah lintasan.

TABLE OF CONTENTS

	IAGE
DECLARATION	
APPROVAL	
DEDICATIONS	
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
I IST OF FIGHDES	
LIST OF FIGURES	xi
LIST OF SYMBOLS AND ABBREVIATIONS	xvi
LIST OF APPENDICES	xvii
CHAPTER 1 INTRODUCTION	1
1.1 Background and Motivation	1
1.2 Problem Statement	2
1.3 Objectives	2
1.4 Scope and Limitations	3
CHAPTER 2 CONTRACTOR REVIEW	4
2.1 Introduction	4
2.2 Previous Method of Trimming CFRP Based Product	4
2.2.1 Similar Utilizations of Robotic Manipulator on Different Task	5
2.2.1.1 Deburring using Robot Manipulator	6 7
2.2.1.2 Palletizing using Robot Manipulator2.3 Fundamentals of Path Planning and Trajectory Generation	8
2.3 Fundamentals of Path Planning and Trajectory Generation2.3.1 Path Planning	10
2.3.1.1 Basic Notions of Path Planning	10
2.3.2 Trajectory Generation and Parameter	10
2.3.2.1 Cubic (Third-Order) Polynomial Trajectories	13
2.3.2.2 Quintic (Fifth-Order) Polynomial Trajectories	14
2.3.2.3 Linear Segments with Parabolic Blends (LSPB)	14
2.3.3 Trajectory Generation Design	15
2.3.3.1 Joint-space Trajectory	15
2.3.3.2 Task-space Trajectory	16
2.3.4 Trajectory Generation Design Comparison	17
2.4 Robot Manipulator Motion Controller	18
2.4.1 Point-to-point Motion Control	19

2.4.2	Conti	nuous-Path Motion Control		21	
2.4.2.1	5 5				
2.5	Robot Manipulator Control Design				
2.5.1	Proportional Integral Derivative (PID) Controller as Compensator				
2.5.2	Optimization Using Fuzzy Logic Method				
2.6	Kinematics of Robot Manipulator				
2.6.1	Denav	it-Hartenberg Representation of Forward Kinematic Equa	tions of	f	
	UR10			27	
2.7	Summ	ary		29	
-	PTER 3			31	
3.1	Introdu			31	
3.2		etical description of the proposed method		32	
	3.2.1	Three-dimensional (3D) model development of CFRP			
		mode lusing Fusion 360	33		
	3.2.2	Creating path according to the shape of the CFRP model	34		
	3.2.3	Find the joint angles using forward and inverse			
		kinematics	36		
	3.2.4	Dynamics Model using Lagrange Formulation	36		
3.3		ives		37	
3.4		ation setup 🧑		37	
	3.4.1	Materials and Equipments	38		
	N.	3.4.1.1 UR10 robot workspace in the world	38		
	F	3.4.1.2 UR10 workspace in Coppeliasim environment	40		
	E	3.4.1.3 Path and Motion Planning via OMPL Plugin			
	100	Coppeliasim	41		
		Simulation setup	42		
3.5	Experi			46	
	3.5.1				
		Generation and Overall Performance of Robot Manipula			
	LINUN	Trimming Task Based on the Amount of Path Points			
	UNIV	Bezier Interpolations. AL MALAYSIA MELAKA			
		3.5.1.1 Objectives	47		
		3.5.1.2 List of Equipment/Setup	48		
		3.5.1.3 Procedure	48		
		3.5.1.4 List of Equipment/Setup	54		
	252	3.5.1.5 Procedure	55		
	3.5.2	Experiment 2: Analysis on the Object Collision	50		
		Avoidance in Coppeliasim simulator.	59		
		3.5.2.1 Objectives	59		
		3.5.2.2 List of Equipment/Setup	59 50		
		3.5.2.3 Procedure	59		
	TER 4			64	
4.1	Overv			64	
4.2	-	ment 1: Analysis on the Effects of Trajectory Generation			
		Il Performance of Robot Manipulator Trimming Task Bas	ed	. .	
	on the	Amount of Path Points and Bezier Interpolations.		64	

4.3	Experiment 2 Coppeliasim	: Analysis on the Object Collision Avoidance in simulator	74
4.4	Discussion	simulator.	83
СНА	PTER 5	CONCLUSION AND FUTURE WORK	85
5.1	Conclusion		85
5.2	Future Work		85
REF	ERENCES		86
APP	ENDICES		91

LIST OF TABLES

Table 2.1 Comparison between Joint space and Task space	18
Table 2.2: Comparison of path planning techniques	29
Table 3.1: Maximum and minimum motion and velocity range	40
Table 3.2: Platform basic data of UR10 robot	40
Table 3.3 Simulation of trajectory generation based on amount of path	
points	54
Table 3.4 10 Initial Path Points out of 156 for each tested path for Collis	ion
Test	63
Table 4.1 Experiment 1 (Coppeliasim) Data Collection	64
Table 4.2 10 Initial Path Points out of 156 for Path 1 for Collision Test	74
Table 4.3 10 Initial Path Points out of 156 for Path 2 for Collision Test	75
Table 4.4 10 Initial Path Points out of 156 for Path 3 for Collision Test	75
Table 4.5 10 Initial Path Points out of 156 for Path 4 for Collision Test	76
Table 4.6 10 Initial Path Points out of 156 for Path 5 for Collision Test	76
Table 4.7 10 Initial Path Points out of 156 for Path 6 for Collision Test	76

LIST OF FIGURES

Figure 2.1 Outcomes from conventional method of trimming CFRP		
Figure 2.2 Peel-up and push-out delamination effects caused by drilling		
process of CFRP	5	
Figure 2.3 Cutting surface area, with 45° chamfer on the workpiece edge	6	
Figure 2.4 Illustration of deburring process	7	
Figure 2.5 Example of Robot Palletizing process	8	
Figure 2.6 Flow chart for the robot manipulator trajectory planning	9	
Figure 2.7 Functional block diagram for the robot	10	
Figure 2.8 Free Space and Forbidden Space	11	
Figure 2.9 Path of the robot, P according to the free space to reach goals, q by avoiding forbidden space	12	
Figure 2.10 The relation between a controller and a robot manipulator		
Figure 2.11 Graph of between Joint angle, i over time, t for point-to-point motion control. UNIVERSITITEKNIKAL MALAYSIA MELAKA Figure 2.12 Continuous path motion control.	21 22	
Figure 2.13 Trajectory Generation via Points.	23	
Figure 2.14 Control system block diagram with PID controller	24	
Figure 2.15 Time-domain PID controller block diagram	25	
Figure 2.16 Frequency-domain PID controller block diagram	25	
Figure 2.17 Fuzzy Logic System basic configuration	26	
Figure 2.18 Denavit-Hartenberg Representation of UR10 Robotic		
Manipulator	28	
Figure 2.19 D-H Parameter points for UR10 Robotic Manipulator	28	

Figure 2.20 D-H Parameter Table for UR10 Robotic Manipulator	29
Figure 3.1 Methodology flowchart	31
Figure 3.2 Experimental setup flowchart	32
Figure 3.3 CFRP model created in Fusion 360 with CFRP as physical	
material	33
Figure 3.4 CFRP model imported in Coppeliasim as OBJ file	34
Figure 3.5 Path planning configuration in Coppeliasim	35
Figure 3.6 The edge extraction for path points generation from CFRP	
model	35
Figure 3.7 Inverse Kinematic Modules use to calculate inverse	
kinematics	36
Figure 3.8 kinematic structure robot UR10	39
Figure 3.9 maximum workspace of UR10 compared to UR5	39
Figure 3.10 UR10 robot in Coppeliasim environment	41
Figure 3.11 UR10 robot maximum reachability in Coppeliasim	41
Figure 3.12 Development of 3D model of CFRP wing in Fusion 360	42
Figure 3.13 IK group under Calculation Modules in Coppeliasim	43
Figure 3.14 IK elements in Coppeliasim	44
Figure 3.15 setup in the Coppeliasim environment	45
Figure 3.16 'Body is dynamic' box is unchecked	45
Figure 3.17 Extracting path from the model edges	46
Figure 3.18 Path converted into target points	46
Figure 3.19 Objectives of using two different software for Experiment 1	47
Figure 3.20 UR10 robotic manipulator placed in the Coppeliasim	
environment	48

Figure 3.21 CFRP model imported into Coppeliasim environment	49	
Figure 3.22 'Edge Edit Mode' in Coppeliasim		
Figure 3.23 'Extract Path' in Coppeliasim		
Figure 3.24 'Toggle Path Mode' in Coppeliasim	50	
Figure 3.25 The simulation started with 156 path points	51	
Figure 3.26 UR10 configured for the trimming simulation	51	
Figure 3.27 Path points reduced by 30	52	
Figure 3.28 126 number of path points	52	
Figure 3.29 96 number of path points	53	
Figure 3.30 66 number of path points	53	
Figure 3.31 36 number of path points	53	
Figure 3.32 6 number of path points	54	
Figure 3.33 CFRP model imported into Fusion 360	55	
Figure 3.34 Simulation and Study mode in Fusion 360	55	
Figure 3.35 'Event Simulation' in Fusion 360	55	
Figure 3.36 Choose CFRP as model's material to study	56	
Figure 3.37 Apply 'Bolt Connectors' as Constraints to the CFRP model	57	
Figure 3.38 Apply 'Transient Load' to the CFRP model and set force		
value to 135 N	57	
Figure 3.39 The force magnitude was oriented similar to the direction		
of the path points in Coppeliasim	58	
Figure 3.40 The FEA analysis was conducted when clicked 'Study'	58	
Figure 3.41 UR10 robotic manipulator placed in the Coppeliasim		
environment	60	
Figure 3.42 CFRP model imported into Coppeliasim environment	60	

Figure 3.43 'Edge Edit Mode' in Coppeliasim	61
Figure 3.44 'Extract Path' in Coppeliasim	61
Figure 3.45 UR10 configured for the trimming simulation	62
Figure 3.46 Both CFRP model and UR10 were set to 'Collidable' to	
detect if collision occur	62
Figure 4.1 Position and Velocity line graph for each joints in UR10	
for 156 number of path points	65
Figure 4.2 Position and Velocity line graph for each joint in UR10 for	
126 number of path points	66
Figure 4.3 Position and Velocity line graph for each joint in UR10 for	
96 number of path points	67
Figure 4.4 Desities and Valesity line errorb for each isint in LID 10 for	
Figure 4.4 Position and Velocity line graph for each joint in UR10 for	60
66 number of path points	68
Figure 4.5 Problem regarding path orientation and placement linearly with product starts to occur at number of path points: 66	69
Figure 4.6 Position and Velocity line graph for each joint in UR10 for 36	
number of path points	70
Figure 4.7 Position and Velocity line graph for each joint in UR10 for 6	
number of path points	71
Figure 4.8 Result of transient force exerted on CFRP model in Autodesk	
Fusion 360 Finite Element Analysis (FEA) simulation	72
Figure 4.9 Result of transient force exerted on CFRP model in Autodesk	
Fusion 360 Finite Element Analysis (FEA) simulation	72
Figure 4.10 Result of transient force exerted on CFRP model in Autodesk	Ē.

Fusion 360 Finite Element Analysis (FEA) simulation	73	
Figure 4.11 Graph for Path 1 Joint Position for each joint		
Figure 4.12 Result of Path 1 setup in Object Collision Avoidance		
experiment	77	
Figure 4.13 Graph for Path 2 Joint Position for each joint	78	
Figure 4.14 Result of Path 2 setup in Object Collision Avoidance		
experiment	78	
Figure 4.15 Graph for Path 3 Joint Position for each joint	79	
Figure 4.16 Result of Path 3 setup in Object Collision Avoidance		
experiment	79	
Figure 4.17 Graph for Path 4 Joint Position for each joint		
Figure 4.18 Result of Path 4 setup in Object Collision Avoidance experiment Figure 4.19 Graph for Path 5 Joint Position for each joint	80 81	
Figure 4.20 Result of Path 5 setup in Object Collision Avoidance		
experiment UNIVERSITI TEKNIKAL MALAYSIA MELAKA	81	
Figure 4.21 Graph for Path 6 Joint Position for each joint	82	
Figure 4.22 Result of Path 6 setup in Object Collision Avoidance		
experiment	82	

LIST OF SYMBOLS AND ABBREVIATIONS

FYP	-	Final Year Project
CFRP	-	Carbon Fibre Reinforced Polymer
OSHA	-	Occupational, Safety and Health Association
UR10	-	Universal Robot 10
PID	-	Proportional Integrated Derivatives
LSPB	-	Linear Segment with Parabolic Blend
R&D	-	Research and Development
DH	-	Denavit-Hartenberg
3D	-	Three Dimensional
DOF	-	Degree of Freedom
TCP	-	Tool Centre Path
OMPL	-	Operational Method for Production and Logistic
IK	-	Inverse Kinematics
FK	-	Forward Kinematics

LIST OF APPENDICES

APPENDIX A FINAL YEAR PROJECT 1 MIND MAP	91
APPENDIX B FINAL YEAR PROJECT (1 & 2) GANTT CHART	92
APPENDIX C OMPL PLUGIN API REFERENCES	93

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The use of a robot manipulator in assisting task can be convenient in lot of ways. This is due to the fact that robot manipulator helps lowering energy consumptions, increase production rate as well as the accuracy in the production line [26]. These attributes are the important elements in why we need to shift from manpower to robotic manipulator-based automation especially regarding those tiring repetitive task.

However, to substitute manpower with robotic manipulator, there are several things that are required to ensure that the manipulator could perform an excellent task compared to human. Things that human could easily do like coordination between vision and movement as well as cognitive decision on avoiding obstacles and following trajectory path are the biggest challenges that a robot manipulator need to face. Therefore, a suitable trajectory planning need to be prepared in order for the robot manipulator to work according to the desired task.

In this project, we will discuss on which trajectory planning that easier for us to use and configure as well as the compatible controller for the robotmanipulator to operate in order to complete the trimming task of carbon fiber reinforced polymer (CFRP) based product. The overall trimming task simulated andthe end result will be analyzed based on the standard specification to obtain the desired quality similar to the manpower output. We will analyze the efficiency of the trimming process by conducting experiment with three different kinds oftrajectory paths with different number of waypoints.

1.2 Problem Statement

In this project, the problem and difficulties faced are regarding the previous method of trimming the Carbon Fiber Reinforced Polymer (CFRP) basedproduct. Among the reason stated is that manual method is believed to be the maincauses for the end product appeared to be in low quality. The finishing is not sharpand clean and usually look brushy and the cutting result is slightly inaccurate. Theseproblems will also lead to other types of problem that surely affecting the production of the CFRP [1].

The manual method of trimming the CFRP product also causes severe damage to the human health. According to the Occupational, Safety and Health Administration (OSHA) in 2009, they stated that the mechanical discomfort and abrasion close to those of glass fibers are the major health risks of carbon fiber handling. Carbon fibers are easily broken by stretching (less than 2 percent elongation); during cutting, machining or mechanical finishing, the fibers can easily become fine dust and can then be released into the ambient environment. If unchecked, these micro fibers have the ability to stick into human skin or irritationcausing mucous membranes [2].

In this project, the problem on investigating the path planning of robot manipulator for trimming process is in generating trajectory based on $position(\theta)$, velocity (θ) and acceleration (θ) for 6 DOF robot for the uniform trimming procedure on the CFRP based product. This is because, the velocity of the robot should be constant throughout the path planning. Besides, the orientation of the tool center path (TCP) should be aligned with the edge of the product.

· Cau

push, mus

1.3 Objectives

1 alle

The objectives of this project are:

i. To identify the trajectory path for the robotic manipulator end effector.

ii. To evaluate the trajectory path performances based on desired specifications.

1.4 Scope and Limitations

Scope and limitations in this study include:

- i. Use Coppeliasim software for simulation purposes.
- ii. Use a six Degree of Freedom (DOF) robotic manipulator for the trimming process.
- iii. The type of trimming Tool Center Path (TCP) as the robotic manipulator end effector is not considered in this project.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews studies that have some similarity to the other researchers' experiments. There is a comparison between the type of trajectory generation that will be applied and some of the mathematical modeling by each article that has been found.

2.2 Previous Method of Trimming CFRP Based Product

AALAYSIA

Conventional material removal processes such as turning, sawing, grinding, and milling are often used to machine-finish fully cured carbon fibre reinforced polymer (CFRP) parts. Machining loss is possible in such systems, and sufficient steps should be taken so that this damage is reduced. Tool wear and the related cutting tool forces crushing the machined surface include causes of machining injury. Excessive instrument forces, mainly the force component normal to the stacking direction, are caused by surface and inter-ply delamination, and heat damage to the matrix results from heat build-up [3].

Because CFRP machining happens by fracturing, and very little plastic deformation is involved, in order to neatly shave the material, an acceptabledegree of edge sharpness is needed. In the milling setup, routing of CFRP compositematerial with burr tools was done and machining efficiency was examined in terms of surface roughness and style and depth delamination. With an increase in feed rate and a decrease in spindle speed, surface roughness improved in the longitudinal direction, leading to an increase in effective chip thickness. With an increase in feedrate and a reduction in cutting speed, the average delamination depth increased, leading to an increase in effective chip thickness. [3,4].

Figure 2.1 Outcomes from conventional method of trimming CFRP

Figure 2.1 shows one of the disadvantages caused by conventional method that need to overcome by using robotic technologies. Figure 2.2 shows delamination that occur during drilling process of CFRP based product.

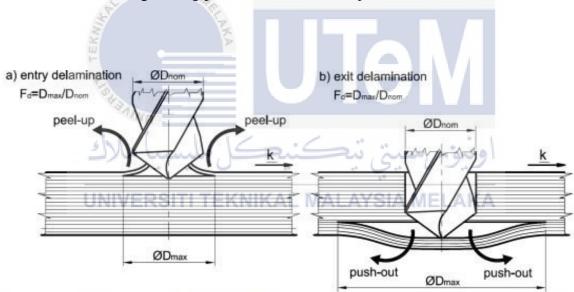


Figure 2.2 Peel-up and push-out delamination effects caused by drillingprocess of CFRP

2.2.1 Similar Utilizations of Robotic Manipulator on Different Task

There are tasks that also utilize robotic manipulator as their actuator on completing the task given. Tasks such as deburring, palletizing and assembly are among the tasks that often use robotic manipulator in their process.