Development of Measurement System via Deep Learning Based Inspection System

BACHELOR OF MECHATRONICS ENGINEERING WITH HONOURS UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Development of Measurement System via Deep Learning Based Inspection System

TO RUI XIANG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Development of Measurement System via Deep Learning Based Inspection System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this report entitled "Development of measurement system via deep learning based inspection system" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degree of Bachelor of Mechatronics Engineering with Honours

DEDICATIONS

To my beloved classmate, friend, mother and father.

ACKNOWLEDGEMENTS

First, I wish like to thank to my FYP supervisor, Dr. Saifulza Bin Alwi @ Suhaimi, who pushed me in this project. Thank you for your support, patience, and guidance me to ensure that this project is under good direction. This project would not have been well completed without his guidance and inspiration.

I would like to my thanks to both FYP panels, Puan Nur Maisarah Binti Mohd Sobran and Dr. Nur Ilyana Binti Anwar Apandi, for their feedback and for giving me my report suggestions.

In addition, I want to thank my beloved parent for always trying to give me the best. They inspired me to be a stronger and more independent person through their care, confidence, concern, and unconditional love. Nevertheless, thanking them would never be enough to always take care of me.

Finally, I would like to take this opportunity to express my sincere gratitude to my parents for all these years of their continuous shower of love, unceasing encouragement, and support. They helped me to understand and think about my title in a better way and answered some uncertainty about this project. I am grateful for their generous attitudes, always ready and willing to sustain them.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

The measurements system is very vital part to the manufacturing industry. The dimension of electronic device is important and should be consistent. Automatic measuring instruments can be used to measure the size of electronic device such as IC chip, resistor and other. Compared to traditional method, automatic measurement can measure the size of an object fast and accuracy. In this project, the focus is on the development of measurement system via deep learning based inspection system. The major problem to development a deep learning model to detect the electronic item is hard, it requires a larger data set of images to achieve faster and high accuracy. The five electronic item that choose to detect are resistor, IC, button, led and PCB. The first objective of this project is to investigate image acquisition, image processing and illuminating system for measure the dimension of electronic item while the second objective is to development a measurement system via deep learning based inspection system by using python. Measurement system via deep learning based inspection system proposed in this project will be using laptop connected with smartphone camera. The camera will be fixed at a position so that the dimension of the electronic components can measure accurately. The program will be write using python language. The YOLO models that used to develop the system is YOLOv3, YOLOv4, tiny-YOLOv3 and tiny-YOLOv4. The YOLO model is train using the online GPU via Google Colaboratory. To test the functionality of measurement system, there two experiments are conducted. In the first experiment, the performances of YOLO models are analyzed. The accuracy of the measurement system via deep learning based inspection system in real-time is the second experiment. The measurement system via deep learning based inspection system is successfully developed.

ABSTRAK

Sistem pengukuran sangat penting bagi industri pembuatan. Dimensi peranti elektronik adalah penting dan harus konsisten. Alat pengukur automatik boleh digunakan untuk mengukur ukuran alat elektronik seperti cip IC, perintang dan lain-lain. Berbanding dengan kaedah tradisional, pengukuran automatik dapat mengukur ukuran objek dengan cepat dan tepat. Dalam projek ini, fokusnya adalah pada pengembangan sistem pengukuran melalui sistem pemeriksaan berdasarkan pembelajaran mendalam. Masalah utama untuk mengembangkan model pembelajaran mendalam untuk mengesan item elektronik adalah sukar, ia memerlukan sekumpulan data yang lebih besar untuk mencapai ketepatan yang lebih cepat dan tinggi. Lima item elektronik yang memilih untuk mengesan adalah perintang, IC, butang, LED dan PCB. Objektif pertama projek ini adalah untuk menyelidiki pemerolehan gambar, pemprosesan gambar dan sistem penerangan untuk mengukur dimensi barang elektronik sementara objektif kedua adalah untuk mengembangkan sistem pengukuran melalui sistem pemeriksaan berasaskan pembelajaran mendalam dengan menggunakan python. Sistem pengukuran melalui sistem pemeriksaan berdasarkan pembelajaran mendalam yang dicadangkan dalam projek ini akan menggunakan komputer riba yang dihubungkan dengan kamera telefon pintar. Kamera akan dipasang pada kedudukan supaya dimensi komponen elektronik dapat mengukur dengan tepat. Program ini akan ditulis menggunakan bahasa python. Model YOLO yang digunakan untuk mengembangkan sistem adalah YOLOv3, YOLOv4, tiny-YOLOv3 dan tiny-YOLOv4. Model YOLO dilatih menggunakan GPU dalam talian melalui Google Colaboratory. Untuk menguji fungsi sistem pengukuran, terdapat dua eksperimen yang dijalankan. Dalam eksperimen pertama, persembahan model YOLO dianalisis. Ketepatan sistem pengukuran melalui sistem pemeriksaan berasaskan pembelajaran mendalam dalam masa nyata adalah eksperimen kedua. Sistem pengukuran melalui sistem pemeriksaan berasaskan pembelajaran mendalam berjaya dikembangkan.

TABLE OF CONTENTS

DECLARATION	i	
APPROVAL	i	
DEDICATIONS	i	
ACKNOWLEDGEMENTS	1	
ABSTRACT	2	
ABSTRAK	3	
TABLE OF CONTENTS	4	
LIST OF TABLES	7	
LIST OF FIGURES	8	
LIST OF SYMBOLS AND ABBREVIATIONS	10	
LIST OF APPENDICES	11	
CHAPTER 1	12	
1.0 Introduction	12	
1.1 Motivation	13	
1.2 Problem statement	14	
1.3 Objectives Inn	15	
1.4 Scope Malanda Contraction	15	
1.5 Organization of thesis	15	
CHAPTER 2 NIVERSITI TEKNIKAL MALAYSIA MELAK	A 17	
2.1 Machine Vision	17	
2.2 Image processing in machine vision	18	
2.3 Image acquisition techniques	19	
2.4 Preview research related to measurement system. 20		
2.5Dimension measurement21		
2.6 Image processing technique	22	
2.7Type of camera23		
2.8 Object recognition	25	
2.9 Deep Learning	26	
2.10 Convolutional Neutral Networks (CNN)	27	
2.11 YOLO Model	28	
2.12 Preview research for object detection.	30	
2.13 Summary	32	
CHAPTER 3	33	

3.1	Introduction 33				
3.2	Project overview 33				
3.4	Object detection 34				
3.4	Measurement system via deep learning-based inspection system flowchart. 37				
3.5	Hardware component 38				
	3.5.1	Digital ca	mera	38	
	3.5.2	Long arm	phone holder	38	
	3.5.3	LED light		39	
	3.5.4	Laptop an	d GPU	39	
3.6	Software			40	
	3.6.1	PyCharm		40	
	3.6.2	LabelImg		41	
	3.6.3	Google C	olaboratory	42	
3.7	System	schematic	diagram.	43	
3.8	Experiment description 44				
	3.8.1 YOLO models and Dataset 44				
	3.8.2Experiment 1: Performance metrics for object detection45				
	3.8.3 Accuracy test of measurement system via deep learning based inspection				
		system in	various distances.	47	
3.9	Summar	ميا ملالا	اوييۇم سيتى بېكىيكى مليس	47	
CHAI	TER 4	WUEDO	TELEVILLA MALAVOIA MELAZA	49	
4.1	Introduc	ction EKS	III TEKNIKAL MALAYSIA MELAKA	49	
4.2	Preliminary Result 49				
	4.2.1 Performance metrics for object detection 49			49	
	4.2.2 Accuracy test of measurement system via deep learning based inspection system in real time 59			ion 59	
		4.2.2.1	Accuracy test of measurement system via deep learning ba inspection system in 15cm.	sed 60	
		4.2.2.2	Accuracy test of measurement system via deep learning ba inspection system in 20cm.	sed 62	
		4.2.2.3	Accuracy test of measurement system via deep learning ba inspection system in 25 cm.	ised 65	
	4.2.3	Summary		68	
CHAF	PTER 5	-		69	
5.1	Conclus	sion		69	
5.2	Recommendation 70				
REFE	RENCE	S		71	

APPENDICES

LIST OF TABLES

Table 2.1	Criteria of machine vision system	18	
Table 2.2	Preview research		
Table 2.3	Type of dimension measurement	21	
Table 2.4	Advantages and disadvantages of each type of camera	25	
Table 2.5	Different between YOLO and tiny-yolo model	30	
Table 2.6	Result for different deep learning algorithm.	30	
Table 2.7	mAP value of each yolo algorithm.	31	
Table 2.8	Comparison for deep learning algoithms	31	
Table 3.1	Parameter in cfg	35	
Table 3.2	Datasets	45	
Table 3.3	Hardware equipment	48	
Table 3.4	Software requirement	48	
Table 4.1	Average precision for each class for all model YOLO model	49	
Table 4 2	Data augmentation confusion matrix of each YOLO model	51	
Table 4.3	Parameters for YOLO models	51	
Table 4.4	Accuracy of object detection for YOLO model	58	
Table 4.5	Accuracy of object detection for YOLO models in 15cm.	61	
Table 4.6	Accuracy of object measurement in 15 cm.	62	
Table 4.7	Accuracy of object detection for YOLO models in 15cm.	64	
Table 4.8	Accuracy of object measurement for YOLO models in 20cm.	64	
Table 4.9	Accuracy of object detection for YOLO models in 25cm.	66	
Table 4.10	Accuracy of object measurement for YOLO models in 25cm.	67	
Table 4.11	Measurement system via deep learning based inspection system	68	

LIST OF FIGURES

Figure 2.1	Image processing process.	19		
Figure 2.2	Simple arrangement for image acquisition.	19		
Figure 2.3	(a) original image (b) canny edge dectection (c) Sobel edge dectection (d)			
	prewitt edge detection	22		
Figure 2.4	Hough transform	23		
Figure 2.5	Working principle for line scan and area scan camera.	25		
Figure 2.6	Summary of Object Recognition Computer Vision Task	26		
Figure 2.7	Neutral network	27		
Figure 2.8	CNN process	27		
Figure 2.9	YOLO Model	28		
Figure 2.10	YOLO network architecture	29		
Figure 3.1	Project Flowchart 34			
Figure 3.2	Training object detection Flowchart 36			
Figure 3.3	Block diagram for YOLO model	36		
Figure 3.4	System Flowchart	37		
Figure 3.5	اوبیوس سینی نیکنیک Vivo v11 back camera	38		
Figure 3.6	Long arm phone holder	38		
Figure 3.7	Iwata GS-01	39		
Figure 3.8	Hp pavilion 15	39		
Figure 3.9	PyCharm [37]	40		
Figure 3.10	OpenCV [38]	40		
Figure 3.11	LabelImg	41		
Figure 3.12	Sample that use labelImg	42		
Figure 3.13	Google Colaboratory	42		
Figure 3.14	Training YOLO model using Google Colaboratary GPU	43		
Figure 3.15	Iriun webcam	43		
Figure 3.16	Schematic of system	44		
Figure 3.17	Example of detect PCB in a image.	46		
Figure 4.1	Bar chart for average precision of 5 classes of YOLO models	50		
Figure 4.2	Parameter for each YOLO models	51		

Loss graph for YOLOv3 5		
Loss graph for YOLOv4		
Loss graph for tiny-YOLOv3 5		
Loss graph of tiny-YOLOv4		
Real-time object detection for YOLO models under normal light condition. 57		
Real-time object detection for YOLO models under dim light condition. 58		
Measurement system via deep learning based inspection system 59		
Performance of measurement system via deep learning based inspection		
system in 15 cm.	61	
Performance of measurement system via deep learning based inspection		
system in 20 cm.	63	
2 Performance of measurement system via deep learning based inspection		
system in 25 cm اونيونرسيتي تيڪنيڪل مليسيا ملاك	66	
	Loss graph for YOLOv4 Loss graph for tiny-YOLOv3 Loss graph of tiny-YOLOv4 Real-time object detection for YOLO models under normal light condition Real-time object detection for YOLO models under dim light condition. Measurement system via deep learning based inspection system Performance of measurement system via deep learning based inspection system in 15 cm. Performance of measurement system via deep learning based inspection system in 20 cm. Performance of measurement system via deep learning based inspection system in 25 cm	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS AND ABBREVIATIONS

PCB	-	Printed Circuit Board		
LED	-	light-emitting diode		
IC	-	Integrated Circuit		
CCD	-	Charge Coupled Device		
CMOS	-	Complementary Metal Oxide Semiconductor		
YOLO	-	You Only Look Once		
CNN	-	Convolution Neutral Network		
R-CNN	-	Region Based Convolutional Neural Networks		
ReLU	-	rectified linear unit		
OpenCV	-	Open-Source Computer Vision Library		
AP	-	Average Precision		
mAP	-	Mean Average Precision		
IoU	-	Intersection over Union		
Fps	-	Frames per second		
2D	- 14	Two-dimensional		
3D	37	Three-dimensional		
	AN TENUL			
	ملاك	اونيۈم سيتي تيڪنيڪل مليسيا		
	UNIVE	RSITI TEKNIKAL MALAYSIA MELAKA		

LIST OF APPENDICES

APPENDIX A	FYP 1 GANTT CHART	75
APPENDIX B	FYP 2 GANTT CHART	76
APPENDIX C	PYTHON PROGRAM CODE FOR OBJECT DETECTION	77
APPENDIX D	PYTHON PROGRAM CODE FOR OBJECT MEASUREMENT	
	WITH OBJECT DETECTION	80

CHAPTER 1

INTRODUCTION

1.0 Introduction

The consistently size of electronic item is vital in manufacturing industry to monitoring the production process. By using the automatic measurement system via deep learning inspection system, the operator will be easy to control and monitor the process. [1].

Automatic measuring instruments are extremely effective to measure the large quantities of electronic item together. Automatic measurement can be achieved immediately compared to traditional techniques because it can avoid human mistake. The human operators can reduce their work to check the parts one by one because the auto measurement system will do the detect and measure the part together. The workers are hard to measure the smaller size of electronic item, they need the help of tool to measure it. With the auto measuring system, worker just need to monitor on the screen, it will greatly reduce the error rate and increase the efficiency of work [2]. The implementation of machine vision technology will accurately determine width and height of objects in geometric measurement.

Next, the object detect is a technique to identify, recognize and local the object in realtime, video and image. The object detection can be categories to two type one is machine learning, and another is deep learning. The machine learning method is using the computer vision technique like edge detection and histogram while deep learning method is using the convolution neutral network (CNN). CNN uses 2D convolutional layers to blend learned features with input data, making it perfect for processing image. Nowadays, most of the people use the deep learning method such as faster R-CNN, YOLO, and Mobile Net to train the object detection. The deep learning model need to train by a large amount of image that has label.

In conclusion, the uses of machine vison are very important in this 4.0 industrial convolution. The use of machine vision can be used in measure the dimension and object

detection. By implementing the machine vision to the manufacturing industry, the operation can save the time, increase productivity, lower the capital cost and reduce the human error. The measurement system via deep learning based inspection system can measure the dimension of electronic item and classify it.

1.1 Motivation

Nowadays, computer vision technique has been widely used in manufacturing industrial to measure and detect the product. The traditional measurement method is low efficiency, and the measurement error are easy to occur. Hence, the uses of machine vision in industrial are vital to improve the efficiency and precision in measurement method. The measurement system via deep learning based inspection system can detect and measure the size of electronic item such as resistor, led, IC, button and PCB accurately and fast.

The demand quality of electronic components is increasing year by year, dimension calculation become one of the important process because it will require a higher inspection efficiency and means requirements. The auto measurement system can measure the component in high speed with accuracy, and it is very flexible can measure in various of shape in real time. Furthermore, the operator can reduce their work to check the component one by one manually, minimize or avoid the common human errors that often occur in the measurement process.

There are a lot of electronic components such as dc motor, sensor, resistor IC, push button, capacitor, potential meter and other. The electronic components are used in many ways, for instance the electronic device that used in house like television, phone, laptop and other. In several industries, such as electronics, industrial, medical, and automotive, electronic components are widely used. Nowadays, electronic components demand is rising steadily from year to year in world. In the reading process, the conventional approach for measuring the electronic components is cumbersome, long measurement time, high human error in workers, and low productivity. Hence, the measurement inspection system is important to check and identify the dimension of electronic component is consistent and accuracy.

1.2 Problem statement

Measurement inspection system plays an important role in manufacturing industry. For this project, machine vision technology and deep learning is used to identify and measure the dimension of electronic components using the camera. The electronic components that selected to measure and detect are PCB, led, resistor, button, and IC.

To development a deep learning model to detect these electronic components is hard, it requires a larger data set of images to achieve faster and high accuracy result. Besides, the dataset model needs to be train and test, the more the sample of data, the higher the accuracy of result obtained. Besides, some of the electronic component sizes are small such as resistor, the camera used are very hard to focus.

Next, is the calibration parameters of visual measurement system using a phone camera. To measure the dimension of electronic components, the camera is fixed in a location so it could detect the object. Moreover, the vibration and lighting problem, also will affect the result obtained. The experiment must conduct in the place that is stable so that the result obtained is consistent and accurate. In addition, methods of data analysis are fundamentally necessary and should be able to interpret information obtained accurately. In order to reduce noise for better processing, the process of acquiring the image of an object is important. The geometric characteristics derived from the images should be correctly defined if the precision of the measurement is not. Then, the different distance height between camera and table will also affect the accuracy of measurement and object detection. The light condition also is a main problem for this project. If there is poor lighting in condition, it will affect the accuracy of object measurement.

In a conclusion, it is important to design and build an autonomous measurement inspection system through this research project to overcome these concerns.

1.3 Objectives

The objectives:

1. To investigate image acquisition, image processing, illuminating system for object detect.

2. To development and program a measurement system via deep learning based inspection system by using Python.

3. To investigate and analyze the performances of measurement system via deep learning based inspection system in term of measurement and object detection.

1.4 Scope

The following segments will concentrate on the project:

1. Using the OpenCV library and machine vision, the software code will be written to detect electronic components.

2. The coding of computer vision and deep learning algorithms will be use, phone camera is used to conduct the experiment.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 3. A laboratory experiment will be conducted to test the system's reliability and performances metrics to detect electronic components.

4. With various distance, the precision of the length and width of the electronic components will be measured.

1.5 Organization of thesis

A brief introduction to the project, including the motivation, goals, and issue statement, is given in Chapter 1 of this study. This project is aimed at solving all of the mentioned problem statements.

For similar studies performed by other researchers, Chapter 2 is the literature review. It provides the basic information needed for this project to be completed. Study compares the approaches and technology are used in problem solving.

The proposed methodology for solving the problem of developing the measurement system through the Deep Learning-based Inspection System is defined in Chapter 3.

In terms of developing the measurement method using a deep learning-based inspection system, Chapter 4 is the outcomes and discussion of the project outcome. There is a discussion of the predicted outcomes of the experiments.

Chapter 5 is the end of the project and the proposal for future work.

CHAPTER 2

LITERATURE REVIEW

In this chapter, the theoretical theories and review of relevant past works that involve in project is discussed. Machine vison is the basic theory that use to measure and detect the electronic components. Besides, the method of deep learning and type of camera will also be discussed in this part. Similar research on computer vision and deep learning technologies have also been addressed in the inspection framework.

2.1 Machine Vision

The machine vision is a subsystem of computer vision, which mean the machine system is the use of computer vision in real-time. For example, machine vision is the use of computer vision in real-time while the computer vision is used to processing image. Computer vision is a field of computer science that operates in the same way as human vision, allowing computers to see, recognize and process images and provide sufficient performance and output. Vision is the most advanced sense of human and hence images have the most important impact to human perception. Human beings can interpret the world's threedimensional structure with apparent ease, such as object shape and translucency and the strength of the lighting and shading can also be readily interpreted. Besides, the machine vision technology can also uses measure the dimension of object with considerably high precision against a complex context [3][4]. It can make the inspection system more beneficial over manual methods using machine vision. Machine vision systems automate inspection to provide high levels or performance as they enable quick, reliable, time-saving, and costeffective solutions to work [5][6]. Machine vision is already being applied today in many different sectors such as manufacturing, medical, construction and other [7]. The table below illustrate the main criteria for machine vision.

Criteria	Parameter
Camera and sensor	Resolution and size
Test Object	Size
	geometric
Illumination	Intensity
	Color of light
	distance
Environment	Environment (day light, vibration fog)
Machine vision system	Software algorithm
	Speed
MALAYSIA 4	interface

Table 2.1: Criteria of machine vision system

2.2 Image processing in machine vision

Images are subjected to image processing, which involves the application of mathematical functions to them. Three computerized process steps, which are the low-level, mid-level and high-level procedures, can be categorized into image processing. The two major sector that use the image processing technique are store and communication area for the auto inspection system. The input and output of image are belonging to the low level of image processing. It has included many functions such as smoothing, contrast, sharpening and noise reduces.

Next, mid-level image processing involves segmenting the image definition of an image to transform its shape into another type that can be interpreted and labeled by a computer. Basically, mid-level processing feeds the computer with images while generating attributes and image characteristics. Besides that, the high-level processing includes describing a set of known objects and executing cognitive functions that are typically associated with human vision. With the image processing technique, the information image can be converted to a digital data that easy to figure the different between images. The imaging equipment encompasses allowing them to work on images produced by sources that are not used by human beings, such as ultrasound, electron microscopy, and images

generated by computers. Therefore, digital image processing is very vital and uses in most of automotive industries. [5]. The Figure 2.1 below show the image processing process.

Figure 2.1: Image processing process.

2.3 Image acquisition techniques

The image acquisition techniques are to convert an image to a digital value that can read by computer. The main function image acquisition are segmentation and enhancement of image, and it can only apply to the image after the image has been acquired. To apply the image acquisition techniques, the use of camera is indispensable. The camera is used to capture the image [8]. The Figure 2.2 below shows the Simple arrangement for image acquisition.

Figure 2.2: Simple arrangement for image acquisition.