## DESIGN OF FERTIGATION CONTROL SYSTEM BASED ON FUZZY LOGIC ALGORITHM

# LAI NGIT SIEW



# DESIGN OF FERTIGATION CONTROL SYSTEM BASED ON FUZZY LOGIC ALGORITHM

## LAI NGIT SIEW



## UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

## DECLARATION

I declare that this thesis entitled "DESIGN OF FERTIGATION CONTROL SYSTEM BASED ON FUZZY LOGIC ALGORITHM is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.



### APPROVAL

I hereby declare that I have checked this report entitled "DESIGN OF FERTIGATION CONTROL SYSTEM BASED ON FUZZY LOGIC ALGORITHM" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degree of Bachelor of Mechatronics Engineering with Honours

| Signature  | Ainain Nur                                               |
|------------|----------------------------------------------------------|
| Supervisor | Name : Ainain Nur Hanafi                                 |
| Date       | ترميع<br>5 July 2021<br>اونيونر،سيتي تيڪنيڪل مليسيا ملاك |
|            | UNIVERSITI TEKNIKAL MALAYSIA MELAKA                      |

## **DEDICATIONS**

To my beloved parent, Lai Thiam Choi and Foo Yoke Yoon, your love and support are the greatest inspiration upon accomplish this project.

To my dear friends for all the motivation along this project.

To my dearest supervisors, Dr. Ainain Nur Binti Hanafi for being responsible, supportive



#### ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my main project supervisor, Dr. Ainain Nur Binti Hanafi for the useful comments, guidance and encouragement throughout this project. I would not have gone this far without her advices, motivation and support in every way. I am truly grateful she has spent her precious time in guiding me upon accomplish my final year project.

Furthermore, I would like to thank my family especially my beloved parents, Lai Thiam Choi and Foo Yoke Yoon for their love, sincere support and care they have given to me all through my study journey.

Last but not least, an honorable mention goes to my lovely friends and course mates who helped and supported me both practically and mentally along completing this project.

TEKNIKAL MALAYSIA MELAKA UNIVERSITI

#### ABSTRACT

Fertigation control system is developed based on fuzzy logic controller that aims to perform high efficiency of water and fertiliser usage in fertigation process in agricultural field to ensure adequate moisture and nutrients are delivered to the crops. The main objective of the system is to accurately deliver the certain amounts of water and fertiliser to the chili plants. The parameter readings of agricultural including pH value and soil moisture level are measured as inputs. The outputs for the system is the water pump and the fertiliser pump. Fuzzy logic is implemented as the controller in this system to control the water and fertiliser amounts to soil in order to maintain the moisture level and pH value of soil. The fuzzy logic controller is built on MATLAB software and the fuzzy rules designed in MATLAB are programmed in the Arduino microcontroller to regulate the amount of water and fertiliser for the plant. Simulink model of the fertigation system control system is constructed to observe the output's performance. Flowchart is used to present the working principle of the control algorithm in this system. Real time implementation of this system is conducted on a chili plant where the growth of plant with Fuzzy logic controller has better growth in terms of the height of plant, the diameter of stems and the number of fruits compared to the chili plant with traditional method. In terms of water and fertiliser usages, the fertigation system with Fuzzy Logic uses less resources than the traditional method.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### ABSTRAK

Sistem kawalan fertigasi ini dibangunkan berdasarkan pengawal logik kabur bagi memastikan penggunaan air dan baja secara efisien dalam proses fertigasi di bidang pertanian. Ini untuk memastikan kelembapan dan nutrien yang mencukupi dibekalkan ke tanaman. Objektif utama sistem ini adalah memberikan sejumlah air dan baja ke tanaman cili dengan tepat. Bacaan parameter yang dikenalpasti adalah nilai pH dan tahap kelembapan tanah sebagai input kepada sistem ini. Keluaran untuk sistem ini adalah pam air dan pam baja. Logik kabur dilaksanakan sebagai pengawal dalam sistem ini untuk mengendalikan jumlah air dan jumlah baja ke tanah untuk mengekalkan tahap kelembapan dan nilai pH yang sesuai untuk tanaman. Pengawal logik kabur dibuat menggunakan perisian MATLAB dan peraturan kabur yang dirancang dalam MATLAB diprogramkan ke dalam mikropengawal Arduino untuk mengendalikan jumlah air dan baja yang disalurkan ke tumbuhan. Model Simulink sistem fertigasi automatik digunakan untuk menguji prestasi output bergantung pada keahlian yang telah dibina. Carta aliran digunakan untuk membentangkan prinsip kerja algoritma kawalan dalam sistem ini. Pelaksanaan masa nyata dilakukan pada tanaman cili di mana tanaman dengan pengawal logik Fuzzy mempunyai pertumbuhan yang lebih baik dari segi ketinggian tanaman, diameter batang dan jumlah buah berbanding dengan tanaman cili yang menggunakan kaedah tradisional. Penggunaan air dan baja bagi sistem fertigasi logik kabur adalah lebih sedikit berbanding kaedah tradisional.

## TABLE OF CONTENTS

|            | ľ                                                                               | AGE      |
|------------|---------------------------------------------------------------------------------|----------|
| DECL       | ARATION                                                                         |          |
| APPR       | OVAL                                                                            |          |
| DEDI       | CATIONS                                                                         |          |
| ACKN       | NOWLEDGEMENTS                                                                   | 1        |
| ABST       | RACT                                                                            | 2        |
| ABST       | RAK                                                                             | 3        |
| TABL       | <b>JE OF CONTENTS</b>                                                           | 4        |
| LIST       | OF TABLES                                                                       | 6        |
| LIST       | OF FIGURES                                                                      | 8        |
|            |                                                                                 | Ū        |
| LIST       | OF SYMBOLS AND ABBREVIATIONS                                                    | 11       |
| LIST       | OF APPENDICES                                                                   | 12       |
| СНАР       | PTER 1 INTRODUCTION                                                             | 13       |
| 1.1        | Background                                                                      | 13       |
| 1.2        | Motivation                                                                      | 14       |
| 1.3        | Problem Statement                                                               | 18       |
| 1.4        | Objectives and a sub-                                                           | 18       |
| 1.5        | Scope                                                                           | 19       |
| СНАБ       | TED 2 CONTRACT AND A SIA MELAKA                                                 | 20       |
| СПАГ<br>21 | Introduction / Overview of The Chapter                                          | 20       |
| 2.1        | Smart Farming                                                                   | 20       |
| 2.2        | Controller Design in Fertigation System                                         | 20       |
|            | 2.3.1 Timer-based Irrigation System 22                                          |          |
|            | 2.3.2 Proportional-Integral-Derivative (PID) Based Irrigation                   |          |
|            | Controller 23                                                                   |          |
|            | 2.3.3 Intelligent Control for Irrigation System 25                              |          |
|            | 2.3.3.1 Fuzzy Logic Control (FLC) Based Fertigation                             |          |
|            | Controller 25                                                                   |          |
|            | 2.3.3.2 Artificial Neural Network (ANN) Based Fertigation<br>Controller 27      |          |
| 2.4        | Sensors Parameter                                                               | 28       |
|            | 2.4.1 pH Value 28                                                               |          |
| 2.5        | 2.4.2 Soil Moisture 30                                                          | 20       |
| 2.5        | Simulation Design                                                               | 30       |
| 26         | 2.3.1 IVIATLAB and SIVIULINK 30<br>Challenges of Implementing the Smort Ferming | 20       |
| 2.0<br>2.7 | Summary                                                                         | 20<br>21 |
| 4.1        | Summary                                                                         | 51       |

| CHA   | PTER 3 METHODOLOGY                                               |       |
|-------|------------------------------------------------------------------|-------|
| 3.1   | Introduction                                                     |       |
| 3.2   | Final Year Project Overview                                      |       |
|       | 3.2.1 Fuzzy control algorithm                                    | 35    |
| 3.3   | Hardware Component Analysis and Selection                        |       |
|       | 3.3.1 Board Selection                                            | 39    |
|       | 3.3.2 Sensor Selection                                           | 41    |
| 3.4   | Design of Experiments                                            |       |
|       | 3.4.1 Experiment 1.1: Calibration of the pH and soil moisture se | nsors |
|       |                                                                  | 43    |
|       | b) Calibration of soil moisture sensor                           | 49    |
|       | 3.4.2 Experiment 1.2: To determine water and fertiliser vo       | lume  |
|       | versus time of pump's ON                                         | 52    |
|       | 3.4.3 Experiment 1.3: Construction of automated fertigation sy   | vstem |
|       | by integrating the microcontroller, sensors and pumps            | 53    |
|       | 3.4.4 Experiment 2.1: Design of the Fuzzy logic controller       | 55    |
|       | 3.4.4.1 Input variable membership function                       | 56    |
|       | 3.4.4.2 Output variable membership function                      | 57    |
|       | 3.4.4.3 If-then rules                                            | 58    |
|       | 3.4.5 Experiment 3.1: Real time implementation                   | 59    |
|       | 3.4.5.1 Method to measure the growth of the plants               | 61    |
|       | 3.4.6 Experiment 3.2: Water and fertiliser usage                 | 63    |
| CHA   | PTER 4 RESULTS AND DISCUSSIONS                                   |       |
| 4.1   | Introduction                                                     |       |
| 4.2   | Validation of amount of water versus time of pump's ON           |       |
|       | 4.2.1 Hardware setup before the actual implementation            | 68    |
| 4.3   | Simulation using MATLAB software and SIMULINK                    |       |
|       | 4.3.1 "Surface" rule viewer                                      | 71    |
| 4.4   | Hardware setup for automatic fertigation system                  |       |
| 4.5   | Measured data from the experiment                                |       |
| CII ( | UNIVERSITI TEKNIKAL MALAYSIA MELAKA                              |       |
| CHA   | PIER 5 CONCLUSION AND RECOMMENDATIONS                            |       |
| 5.1   | Conclusion                                                       | 70    |
|       | 5.1.1 Reflection on Built System                                 | 79    |
| 5.2   | Recommendation                                                   |       |
| REF   | ERENCES                                                          |       |
|       | ENDICES                                                          |       |
|       |                                                                  |       |

## LIST OF TABLES

| Table 1.1: Growth of Labour Productivity, 2016 - 2018                        | 14  |
|------------------------------------------------------------------------------|-----|
| Table 1.2: Agricultural and forestry production, 2017-2019                   | 15  |
| Table 1.3: Planted area for main crops, 2017-2019                            | 16  |
| Table 3.1: Specification Comparison on Raspberry Pi 3 model B+ and Ardu      | ino |
| Mega 2560                                                                    | 39  |
| Table 3.2: List of experiments over objectives                               | 43  |
| Table 3.3: Data obtained for pH value from the vinegar                       | 46  |
| Table 3.4: Data obtained for pH value from the pepsi                         | 46  |
| Table 3.5: Data obtained for pH value from the fertiliser                    | 47  |
| Table 3.6: Data obtained for pH value from the pipe water                    | 47  |
| Table 3.7: Data obtained for pH value from the dishwashing soap              | 48  |
| Table 3.8: Data obtained for pH value from the tea                           | 48  |
| Table 3.9: Data obtained for pH value from the floor cleaning liquid         | 49  |
| Table 3.10: Data obtained for soil moisture value and soil moisture percenta | ige |
| for the dry soil                                                             | 50  |
| Table 3.11: Data obtained for soil moisture value and soil moisture percenta | ige |
| for the dry soil                                                             | 50  |
| Table 3.12: Data obtained for soil moisture value and soil moisture percenta | ige |
| for the medium moist soil                                                    | 51  |
| Table 3.13: Data obtained for soil moisture value and soil moisture percenta | ige |
| for the moist soil                                                           | 51  |
| Table 3.14: Result of pump time vs transferred amount                        | 53  |
| Table 3.15: Input pH and soil moisture with water pump output                | 58  |

| Table 3.16: Input pH and soil moisture with fertiliser pump output | 59 |
|--------------------------------------------------------------------|----|
| Table 3.17: Fertigation method for two chilli plants               | 60 |
| Table 3.18: Data collection of chili plants                        | 63 |
| Table 3.19: Water and fertiliser usage for chili plants            | 64 |
| Table 3.20: Total water and fertiliser usage                       | 64 |
| Table 4.1: Data collection of both chili plants                    | 76 |
| Table 4.2: Result of experiment                                    | 77 |
| Table 4.3: Total water and fertiliser usage                        | 78 |



## LIST OF FIGURES

| Figure 1.1: Performance of the Main Economic Sectors, 2018                   |    |  |  |
|------------------------------------------------------------------------------|----|--|--|
| Figure 1.2: Water Losses in Agriculture                                      | 17 |  |  |
| Figure 2.1: Precision Farming in Crop Nutrient Management                    |    |  |  |
| Figure 2.2: Block diagram of the timer-based irrigation system               | 22 |  |  |
| Figure 2.3: Open-loop system blocks diagram                                  | 23 |  |  |
| Figure 2.4: Schematic diagram of the irrigation control using PID controller | 24 |  |  |
| Figure 2.5: Closed-loop Control System                                       | 24 |  |  |
| Figure 2.6: The simulation diagram of fuzzy logic controller                 | 26 |  |  |
| Figure 2.7: Block-scheme of a Fuzzy Logic system                             | 27 |  |  |
| Figure 2.8: Typical neural network architecture                              | 27 |  |  |
| Figure 2.9: Structure of ANN-PID control system                              | 28 |  |  |
| Figure 2.10: pH scale (pH 0-14)                                              | 29 |  |  |
| Figure 3.1: Flowchart of final year project overview                         | 34 |  |  |
| Figure 3.2: Flowchart for the control algorithm part 1                       | 36 |  |  |
| Figure 3.3: Flowchart for the control algorithm part 2                       | 37 |  |  |
| Figure 3.4: Flowchart for the control algorithm part 3                       | 38 |  |  |
| Figure 3.5: Arduino Mega 2560 Overview                                       | 41 |  |  |
| Figure 3.6: Soil Moisture Sensor                                             | 42 |  |  |
| Figure 3.7: Analog pH Sensor                                                 | 42 |  |  |
| Figure 3.8: Setup to offset to 2.5V                                          | 44 |  |  |
| Figure 3.9: Serial monitor shows 2.5V                                        | 44 |  |  |
| Figure 3.10: Average pH value of the pipe water before calibration           | 45 |  |  |
| Figure 3.11: Calibration code to be modified to get an accurate pH value     | 45 |  |  |

| Figure 3.12: Average pH value of the pipe water after calibration        |    |  |
|--------------------------------------------------------------------------|----|--|
| Figure 3.13: Vinegar (strong acid)                                       | 46 |  |
| Figure 3.14: Pepsi (slight acid)                                         | 46 |  |
| Figure 3.15: Fertiliser (Neutral)                                        | 47 |  |
| Figure 3.16: Pipe water (neutral)                                        | 47 |  |
| Figure 3.17: Dishwashing soap (Slight Alkaline)                          | 48 |  |
| Figure 3.18: Tea (Slight Alkaline)                                       | 48 |  |
| Figure 3.19: Floor cleaning liquid (Strong Alkaline)                     | 49 |  |
| Figure 3.20: Dry soil                                                    | 50 |  |
| Figure 3.21: Medium moist soil                                           | 51 |  |
| Figure 3.22: Moist soil                                                  | 52 |  |
| Figure 3.23: Before experiment                                           | 53 |  |
| Figure 3.24: After experiment                                            | 53 |  |
| Figure 3.25: Connection of hardware with label                           | 54 |  |
| Figure 3.26: Block diagram of the project                                | 55 |  |
| Figure 3.27: Fuzzy Logic Designer                                        | 56 |  |
| Figure 3.28: Membership value assignment for input pH value              | 57 |  |
| Figure 3.29: Membership value assignment for input soil moisture reading | 57 |  |
| Figure 3.30: Membership value assignment for output water pump time      | 58 |  |
| Figure 3.31: Membership value assignment for output fertiliser pump time | 58 |  |
| Figure 3.32: Rule viewer for the fertigation system                      | 58 |  |
| Figure 3.33: Plant A                                                     | 61 |  |
| Figure 3.34: Plant B                                                     | 61 |  |
| Figure 3.35: Height measuring of chili plant                             | 62 |  |
| Figure 3.36: Diameter measuring of chili plant                           | 62 |  |

| Figure 3.37: Reading taken using ruler                         | 63 |
|----------------------------------------------------------------|----|
| Figure 4.1: Dry soil                                           | 67 |
| Figure 4.2: Medium moist soil                                  | 67 |
| Figure 4.3: High moist soil                                    | 68 |
| Figure 4.4: Hardware setup for pre-experiment                  | 68 |
| Figure 4.5: Result for fertigation recorded in serial monitor  | 69 |
| Figure 4.6: Denoting the values to inputs                      | 70 |
| Figure 4.7: Validating the values of outputs                   | 70 |
| Figure 4.8: pH value and soil moisture vs water pump time      | 71 |
| Figure 4.9: pH value and soil moisture vs fertiliser pump time | 71 |
| Figure 4.10: Simulink diagram of fuzzy logic controller        | 72 |
| Figure 4.11: Insert $pH = 4.01$                                | 73 |
| Figure 4.12: Insert soil moisture = 27.7                       | 73 |
| Figure 4.13: Result tested shown in graph                      | 74 |
| ويتور سيبي Figure 4.14: Hardware setup for fertigation system  | 75 |
| UNIVERSITI TEKNIKAL MALAYSIA MELAKA                            |    |

## LIST OF SYMBOLS AND ABBREVIATIONS

| AI     | - | Artificial Intelligent           |  |
|--------|---|----------------------------------|--|
| PID    | - | Proportional-Integral-Derivative |  |
| pН     | - | Potential of Hydrogen            |  |
| IR     | - | Industrial Revolution            |  |
| AR     | - | Agricultural Revolution          |  |
| MATLAB | - | Matrix Laboratory                |  |
| FYP    | - | Final Year Project               |  |
| VCC    | - | Voltage Common Collector         |  |
| GND    | - | Ground                           |  |
| FIS    | - | Fuzzy Inference System           |  |



## LIST OF APPENDICES

| APPENDIX A | GANTT CHART FOR FYP 1            | 86 |
|------------|----------------------------------|----|
| APPENDIX B | GANTT CHART FOR FYP 2            | 87 |
| APPENDIX C | CODING FOR AUTOMATIC FERTIGATION |    |
|            | SYSTEM                           | 88 |



#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Background

Agriculture is the largest economic sector and it plays an important role in the economic growth of the world (Chetan Dwarkani M, et al., 2015). It has been one of the most significant sector since it provides humans with different resources such as food, medicine, fiber and energy for the current and future generations (Minwoo Ryu, et al.). However, the major problem faced in many agricultural sectors is the lack of mechanization involved in agricultural activities. Majority of farmers are the elderly and they are less educated to adopt new technology in agriculture. This will result in low production of plant and fruit yield. According to Junjin Ruan, et al. (2015), in the developed country, crucial technology of precision agriculture is the intelligent control of both irrigation and fertilisation. Therefore, design of fertigation control system in agriculture based on artificial intelligence must be emphasized in order to produce crops with minimum use of natural resources such as water and fertiliser. Besides, crops yield could be increased with less environmental effects.

#### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Fertigation is the process of delivering fertilised water in the agricultural field. In the 11th Malaysian Plan (2016-2020), the agricultural sector has to be transformed and modernized to ensure food security, increase productivity, improve skillsets of farmers and enhancing agro-food supply chain (Ahmad, S. B. & Badril Hashim, A. B., 2019). Nowadays, artificial intelligent (AI) algorithm such as fuzzy logic and neural network have been introduced as intelligent control for fertigation system instead of using timer-based system and Proportional-Integral-Derivative (PID) based controller. The reason of using this novel is to increase growth efficiency through process automation. By using smart devices such as Arduino Mega and few other sensors to detect pH value, soil moisture level, humidity and temperature, farmers can automate various processes across the production cycle of plants, for example irrigation, fertilisation and even pest control.

#### 1.2 **Motivation**

According to the Malaysian Productivity Corporation (MPC) in its 26<sup>th</sup> Productivity Report 2018, the productivity growth in Malaysia is low and the growth level was reported to be stagnant in 2017 and then went through a significant decline in 2018.

|                                              | Growth (%) |      |      |  |
|----------------------------------------------|------------|------|------|--|
|                                              | 2016       | 2017 | 2018 |  |
| Productivity                                 | 3.1        | 3.7  | 2.2  |  |
| (Source: Department of Statistics, Malaysia) |            |      |      |  |

Table 1.1: Growth of Labour Productivity, 2016 - 2018

(Source: Department of Statistics, Malaysia)

Agriculture only contributed 7.3% of Malaysia 2018 Gross Domestic Product (GDP), which is the fourth largest contributor to GDP among 5 main sectors namely services, manufacturing, construction, agriculture and mining and quarrying.



Figure 1.1: Performance of the Main Economic Sectors, 2018

(Source: Department of Statistics, Malaysia)

Hence, as one of the strategies to boost the growth capacity, equipment efficiency and reduction of underutilization of resources include water and fertiliser, the government has launched the Policy of the Industry Revolution (IR 4.0) in 2018 and Agriculture 4.0 is introduced. (Rozhan, A. D. & Mohammad, F. T., 2020). AI is one of the pillars in IR 4.0 and it can be applied in AR 4.0, which it analyzes the data from sensors and device to make decision on the amount of water and fertiliser for each plant by activating the pump and valve.

In addition, the importance to control the concentration of fertiliser and pH of soil is to avoid the growth of plant being affected and prevent environment from pollution. This happens when fertilisers are not fully utilized by the growing plants, those excessive fertilisers can be lost from the farm fields carries by the rain water into lakes and rivers. This phenomenon will result in the negative impact on downstream water quality and causes water pollution.

Over the years, the agricultural and forestry productions are increasing gradually among every country as well as in Malaysia. As the population increases, the demand for food rises as well. Department of Agriculture of Malaysia had published that the data of agricultural and forestry production from 2017 through 2019. As shown in Table 1.2, in 2017, the total number of agricultural production in Malaysia is about 30.3 million tonnes while in 2019, Malaysia has a total agricultural production of 30.6 million tonnes. This shows that the growth of production of crops is increasing in the duration of merely 3 years. In addition, Malaysia currently has high contribution to palm oil production and export in the world which is 39% and 44%, respectively (Ahmad Safwan, A. B., Zareen, Z., 2019).

| Types of Plant |         | Production in '('000) Mt - Tonnes |         |         |
|----------------|---------|-----------------------------------|---------|---------|
|                |         | 2017                              | 2018    | 2019    |
| Natural rubber | Estate  | 49.3                              | 55.5    | 61.2    |
|                | Small   | 690.8                             | 547.8   | 578.6   |
|                | holding |                                   |         |         |
|                | Total   | 740.1                             | 603.3   | 639.8   |
| Crude palm oil |         | 19919.3                           | 19516.1 | 19858.4 |
| Palm kernel    |         | 4951.0                            | 4859.4  | 4892.0  |
| Cocoa beans    |         | 1.0                               | 0.8     | 1.0     |

Table 1.2: Agricultural and forestry production, 2017-2019

| Coconut oil (crude and refined) | 50.5    | 69.1    | 83.4    |
|---------------------------------|---------|---------|---------|
| Paddy                           | 2570.5  | 2639.2  | 2912.2  |
| Rice                            | 1656.3  | 1700.2  | 1876.9  |
| Pepper (black pepper and white  | 30.4    | 32.3    | 33.9    |
| pepper)                         |         |         |         |
| Pineapple                       | 340.7   | 322.6   | 302.4   |
| Tea (green leaves)              | 10.4    | 10.8    | 6.6     |
| Total in production             | 30270.2 | 29753.8 | 30606.6 |

(Source: Department of Agriculture of Malaysia, 2017-2019)

With the raise of irrigated cropland, the demand for irrigation water will definitely increase in the same time. According to Rosegrant and Cai (2002), the total water demand for irrigation purpose will be increased by 13.6% by 2025.

As reported by Department of Agriculture of Malaysia, the planted area for main crops in Malaysia exceeded 7.8 million hectares in 2019, it shows increment of 0.2 million hectares compared to 2017. These statistics show the water demand for irrigation is also increase simultaneously as well as the requirement of fertiliser for fertilisation process.

| and the second sec |         |                                    | *       |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------|---------|--------|
| Main crops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | Production in '('000 Ha) - Hectare |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 2017                               | 2018    | 2019   |
| Rubber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Estate  | 75.1                               | 73.5 AK | 95.4   |
| ONIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Small   | 1006.6                             | 1011.5  | 1107.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | holding |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total   | 1081.7                             | 1085.0  | 1202.8 |
| Oil Palm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Estate  | 4831.4                             | 4869.4  | 4913.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Small   | 979.8                              | 979.9   | 986.3  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | holding |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total   | 5811.1                             | 5849.3  | 5900.2 |
| Cocoa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Estate  | 0.9                                | 0.9     | 0.9    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Small   | 16.6                               | 14.8    | 14.8   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | holding |                                    |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total   | 17.5                               | 15.7    | 15.7   |
| Paddy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 685.5                              | 700.0   | 684.4  |
| Pepper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 17.1                               | 7.2     | 7.3    |
| Pineapple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 12.9                               | 13.6    | 12.8   |
| Tea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2.3                                | 2.3     | 1.6    |
| Total in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 7628.1                             | 7673.1  | 7824.8 |

Table 1.3: Planted area for main crops, 2017-2019

(Source: Department of Agriculture of Malaysia, 2017-2019)

In fact, some of the problems that arise from rapid growth of agricultural and extension of irrigation area which are low efficiency of irrigation and water wastage. From the Figure 1.2 below, the efficiency of irrigation is very low, which only 65% of the water is used by the crops and other water is lost. (Chartzoulakisa, K. & Bertaki, M., 2015).



Figure 1.2: Water Losses in Agriculture

(Source: Agriculture and Agricultural Science Procedia 4 (2015) 88 - 98)

## UNIVERSITI TEKNIKAL MALAYSIA MELAKA

There is water wasting during watering and over-fertilisation during fertilising. Errors in irrigation scheduling causes either water is wasted or crop yield is reduced (M. H. Pham, et al., 2013). Besides, Md. Azizul Bari et al., 2015 has done the research on the water consumption patterns in Kuala Lumpur, Malaysia. There is a total of 197 households were surveyed in and the water consumption for gardening is 21.1 litres per capita day with a standard deviation of 23.1.

Emmanuel A. A. et al., 2020 have stated that the demand for freshwater is increasing due to the growth in population in addition present the effect of global warming and climate change which to threaten the clean water use and food security. In the aftermath of these threats, many farmers all over the world are demanding a very high amount of water consumption from various source in the irrigation systems. Therefore, in order to minimize the waste of supplies and improve the efficiency of

water usage in fertigation agriculture, implementing a control algorithm for fertigation system by considering weather, moisture and pH of the soil in Malaysia is tremendously important since it is an effective solution to water and fertiliser wastage.

#### **1.3 Problem Statement**

The first problem statement of this study is each sensor such as analog pH sensor kit and soil moisture sensor is needed for each plant respectively, where bigger field costs higher expenses. Hence, the limitation of scope in this study is home and small-scaling farming.

Next problem is there are water wasting during watering and over-fertilisation during fertilising in the timer-based method or conventional method. To overcome this, an involvement of intelligent algorithm as fertigation control is playing a crucial role in controlling the fertigation system in order to decide the amount of water and fertiliser for each plant.

The major problem faced in many agricultural sectors is the lack of mechanization involved in agricultural activities. Majority of farmers are the elderly and they are less educated to adopt new technology in agriculture. This will result in low production of crop yield due to the traditional method is not sufficient to monitor the plants' condition.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### 1.4 Objectives

- 1. To develop an automated fertigation system using microcontroller system.
- 2. To design the fuzzy logic controller for the fertigation system.
- 3. To analyse the water and fertiliser usages by comparing traditional method with fuzzy logic controller method.

## 1.5 Scope

- 1. Focus in home and small-scale farming for chilies plant where both chilies plant are put under open shelter in this project.
- 2. The data collection period of plants' growth is within 30 days.
- 3. Arduino Mega 2560 used as microcontroller to setup the configuration of the system.
- 4. Fuzzy logic controller is chosen in the fertigation control system.
- 5. The simulation of fuzzy logic system is done using MATLAB software and Simulink.
- 6. Soil moisture level and pH value as the soil parameters to be measured for fertigation purpose.
- 7. The output components of this system are the water pump and the fertiliser pump.

