WHEEL DRIVE ARTICULATED ROBOT MOVING ON THE INCLINE HALF PIPE

BACHELOR OF MECHATRONICS ENGINEERING WITH HONOURS UNIVERSITI TEKNIKAL MALAYSIA MELAKA

WHEEL DRIVE ARTICULATED ROBOT MOVING ON THE INCLINE HALF PIPE

LAU KAR HEI

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Mechatronics Engineering with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this thesis entitled "WHEEL DRIVE ARTICULATED ROBOT MOVING ON THE INCLINE HALF PIPE is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	st walarsia fleritis.
Name	: LAU KAR HEI
Date	: 12 July 2021 : اونوم سن تكنك مليسا ملاك
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this report entitled "WHEEL DRIVE ARTICULATED ROBOT MOVING ON THE INCLINE HALF PIPE" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degree of Bachelor of Mechatronics Engineering with Honours

DEDICATIONS

To my beloved mother and father

ACKNOWLEDGEMENTS

In preparing this project, I received a lot of help from many people. They have contributed to my understanding and thought for the project. I particularly wish to express my appreciation to my final year project coordinator, Dr. Nurdiana Binti Nordin @Musa, for her guidance, advice, and motivation. Besides, I am very grateful to my main project supervisor, Mohd Zamzuri Bin AB Rashid, who gave me the golden opportunity to do this great project, which has guided me to do the project from beginning to end.

Next, I am also indebted to my project panels, Professor Madya Dr. Ahmad Zaki Bin Shukor and Dr. Mohd Khairi Bin Mohamed Nor, for their encouragement, guidance, and critics for the project. Without their opinions, I would have been unaware of so many new things and failures that had to be avoided.

Lastly, my sincere appreciation also extends to my friends and families, who gave me much support, advice, and suggestions in this project. Thanks again to all who helped me to finish this project within a limited time.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ونيؤمرسيتي تيكنيكل مليسيا ملاك

ABSTRACT

Pipelines are essential instruments since they are used for various purposes, such as transportation of oil, water, or gaseous substances in many industries. The pipelines are aging and corrosive, which can lead to accidents if these concerns are overlooked. Pipeline inspection robots are designed to inspect and eliminate hazards inside the objectives not pipelines where human inspection is difficult. This project proposes a new pipeline stated clearly inspection robot design that can examine the inclined pipelines. The proposed approach is to build a semi-autonomous articulated pipeline inspection robot with adaptive legs. The pipeline's inner surface is fitted with two independent wheel drive units symmetrically mounted with a robot chassis. Besides, the adaptive legs are selfadjustable according to the inclination of the pipeline. The articulated pipeline inspection robot is designed for maneuvering in a straight half-pipe with a diameter of 152 mm with various incline positions. For better wheel traction of the robot, the mathematical model of the articulated pipeline inspection robot is configured. The pipeline inspection robot can transmit information such as the pipeline's inclination angle and communicate via the Bluetooth module. Data such as the angle of inclination and acceleration of the in-pipe inspection robot are collected and analyzed to determine the articulated pipeline inspection robot's performance at various pipeline inclination. Finally, some of the conclusions are essential for optimal design and motion control of the robot's legs to get better traction to prevent slippage.

summary of results?

ABSTRAK

Saluran paip adalah instrumen yang penting untuk tujuan memindahkan minyak, air, atau gas yang digunakan oleh sektor perindustrian. Keadaan saluran paip yang kurang baik seperti penghakisan boleh menyebabkan kemalangan sekiranya masalah ini diabaikan. Robot pemeriksaan saluran paip dirancang untuk memeriksa dan memindahkan bahan yang berbahaya di dalam saluran paip. Manusia sukar untuk membuat pemeriksaan bahagian dalam saluran paip disebabkan saiz yang kecil dan kompleks. Projek ini mencadangkan penciptaan robot pemeriksaan saluran paip baru yang dapat membuat pemeriksaan pada saluran paip yang condong. Pendekatan yang dicadangkan adalah membina robot pemeriksaan saluran paip artikulasi separa autonomi dengan kaki yang adaptif. Sistem penyesuaian diameter saluran paip dilengkapi dengan dua unit pemacu roda bebas yang dipasang secara simetri dengan badan robot. Selain itu, kaki adaptif boleh menyelaras secara autonomi mengikut kecenderungan saluran paip. Robot pemeriksaan saluran paip artikulasi direka dapat bergerak dalam paip separuh lurus dengan diameter 152mm dengan pelbagai kecondongan. Pemodelan matematik digunakan untuk mencipta robot pemeriksaan saluran paip artikulasi yang mempunyai system kecengkaman roda yang lebih baik dan efektif. Robot pemeriksaan saluran paip dapat menghantar maklumat seperti sudut kecenderungan saluran paip dan berkomunikasi dengannya melalui peranti Bluetooth. Data yang dihantar oleh robot pemeriksaan saluran paip akan dikumpul dan dianalisis untuk mengetahui prestasi robot pada pelbagai kecenderungan saluran paip. Akhirnya, beberapa konsep atau isu untuk reka bentuk dan kawalan pergerakan kaki robot untuk mendapatkan kecengkaman roda yang lebih memuaskan untuk mengelakkan tergelincir.

TABLE OF CONTENTS

	IAGE
DECLARATION	
APPROVAL	
DEDICATIONS	
ACKNOWLEDGEMENTS	2
ABSTRACT	3
ABSTRAK	4
TABLE OF CONTENTS	5
LIST OF TABLES	8
LIST OF FICTIPES	10
	10
LIST OF SYMBOLS AND ABBREVIATIONS	23
LIST OF APPENDICES	24
CHAPTER 1 INTRODUCTION	25
1.0 Background	25
1.1 Motivation	27
1.2 Problem Statement	30
1.3 Objectives	30
1.4 Scopes	30
UNIVERSITI TEKNIKAL MALAYSIA M	IELAKA
CHAPTER 2 LITERATURE REVIEW	32
2.0 Chapter Overview	32
2.1 Review on History of the Pipeline Inspection Robot	32
2.1.1 External Pipeline Inspection Robot	52 25
2.1.2 Internal Fipeline Inspection Robot	33
2.1.5 Articulated Tipeline Inspection Robot	Robot 41
2.2 Review on Traction Methods of Experime inspection 2.2.1 Gravity Type	41
2.2.2 Wall-Pressed Type	42
2.2.3 Adhesion Type	44
2.3 Review on Hardware and Software System	47
2.3.1 Microcontroller	47
2.3.2 Motor Driver	49
2.3.3 Actuator	49
2.4 Review on Robotics Design Software	51
2.4.1 AutoCAD	51
2.4.2 SolidWorks	51
2.4.3 CATIA V5	52
2.5 Review on Control Systems for Pipeline Inspection	Robot 54

	2.5.1	Proportional-Integral-Derivative (PID) Controller	54
	2.5.2	Fuzzy Logic Controller (FLC)	54
2.6	Summ	ary	55
CHAI	PTER 3	METHODOLOGY	58
3.0	Chapte	er Overview	58
3.1	Final Y	Year Project Flowchart	58
3.2	Articu	lated In-pipe Inspection Robot Flowchart	62
3.3	Gantt	Chart and Milestone	63
3.4	Resear	ch Design	69
	3.4.1	House of Quality	69
	3.4.2	List of Decision Characteristics	70
	3.4.3	Project Measurement Performances	71
	3.4.4	Articulated In-pipe Inspection Robot Design Specifications	72
	3.4.5	Mathematical Modelling of Pipeline Inspection Robot	73
	3.4.6	CAD Design of Articulated In-pipe Inspection Robot	77
		3.4.6.1 Full Assembly View	77
		3.4.6.2 Design of Modules	79
	3.4.7	Electronic Components Selection	85
		3.4.7.1 Arduino Nano ATmega328	85
	~	3.4.7.2 GY-521 MPU6050 6-DOF Accelerometer and Gyroscope	87
	S.	3.4.7.3 RF Transceiver 2.4G	88
	3	3.4.7.4 Bluetooth Serial Transceiver HC-05	89
	Ē	3.4.7.5 Dual Axis TT Gear Motor	90
	-	3.4.7.6 DC Stepper Motor 28BYJ-48	92
3.5	Systen	n Design Configuration	93
0.0	3.5.1	Functional Schematic Diagram of the Electronic Components	93
	3.5.2	Electronic Schematic Diagram of Electronic Components	94
3.6	Experi	mental Setup	95
010	3.6.1	Articulated In-pipe Inspection Robot Moving at the Horiz	ontal
		Inclination	95
	3.6.2	Articulated In-pipe Inspection Robot Moving at the Vertical Inclina	ation
			97
CHAI	PTER 4	RESULTS AND DISCUSSIONS	99
4.0	Chapte	er Overview	99
4.1	Articu	lated In-pipe Inspection Robot Design	99
4.2	Analys	sis on Articulated In-pipe Inspection Robot Modelling	103
	4.2.1	Simulation on Articulated In-pipe Inspection Robot with Reg	gular 103
	422	Simulation on In-pipe Inspection Robot with Omni-Wheels	108
	4.2.3	Simulation on In-pipe Inspection Robot with Mecanum Wheels	113
4.3	The C	alibration of Gyroscope Sensors on Articulated In-pipe Inspection	110
	Robot		119
4.4	Articu	lated In-pipe Inspection Robot Moving at Horizontal Inclination	120
	4 4 1	Articulated In-Pipe Inspection Robot with Regular Wheels	120
	7 .7 .1	4.4.1.1 Testing at Fixed Pine Inclination at 0°	120
		A A = 1 2 Testing at Fixed Dipe Inclination at 10°	120
		4.4.1.3 Testing at Fixed Pipe Inclination at 20°	120
		4.1.1.3 Testing at Fixed Dipa Inclination at 20	122
		$4.4.1.5$ Testing at Fixed Dipe Inclination at 40°	127
		4.4.1.3 resulig at fixed ripe inclination at 40	13/

	4.4.2	Articulated In-Pipe Inspection Robot with Omni-Directional	Wheels
			142
		4.4.2.1 Testing at Fixed Pipe Inclination at 0°	142
		4.4.2.2 Testing at Fixed Pipe Inclination at 10°	147
		4.4.2.3 Testing at Fixed Pipe Inclination at 20°	151
		4.4.2.4 Testing at Fixed Pipe Inclination at 30°	155
	4.4.3	Articulated In-Pipe Inspection Robot with Mecanum Wheels	160
		4.4.3.1 Testing at Fixed Pipe Inclination at 0°	160
4.5	Articu	lated In-pipe Inspection Robot Moving at Vertical Inclination	166
	4.5.1	Articulated In-Pipe Inspection Robot with Regular Wheels	166
		4.5.1.1 Testing at Fixed Pipe Inclination at 0°	166
		4.5.1.2 Testing at Fixed Pipe Inclination at 10°	171
	4.5.2	Articulated In-Pipe Inspection Robot with Omni-Directional	Wheels
			176
		4.5.2.1 Testing at Fixed Pipe Inclination at 0°	176
		4.5.2.2 Testing at Fixed Pipe Inclination at 10°	181
	4.5.3	Articulated In-Pipe Inspection Robot with Mecanum Wheels	187
		4.5.3.1 Testing at Fixed Pipe Inclination at 0°	187
4.6	Summ	nary	193
СНА	PTER 5	CONCLUSION AND RECOMMENDATIONS	10/
5 0	Conch		194
5.0	Recon	nmendation	194
5.1		innendation	174
APPE	ENDICI	ES	202
	To.		
	83		
		<an< td=""><td></td></an<>	
	1Ne	alunda GiGiGi in anal	
	-/~		
		19	
	UNIV	ERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF TABLES

Table 1.1: Standard and Codes of practice for piping [1].	25
Table 1.2: Performance comparison of the in-pipe inspection robot [7]	29
Table 2.1: Features of the external pipeline inspection robot	35
Table 2.2: Features of internal pipeline inspection robot	38
Table 2.3: Features of articulated pipeline inspection robot	41
Table 2.4: Comparison between the type of traction method	46
Table 2.5: Comparison of microcontroller	48
Table 2.6: Comparison of motor drivers	49
Table 2.7: Advantages and disadvantages based on the type of motors	50
Table 2.8: Pros and cons of AutoCAD, SolidWorks, and CATIA V5	53
Table 2.9: Comparison of three controllers [28]	55
Table 2.10: Summary of most relevant literature journal [14, 19, 20]	56
Table 2.11: Summary of most relevant literature journal [31, 32, 42]	57
Table 3.1: Gantt chart for FYP 1	64
Table 3.2: Milestone for FYP 1	65
Table 3.3: Gantt chart for FYP 2	67
Table 3.4: Milestone for FYP 2	68
Table 3.5: Key engineering characteristics with units	69
Table 3.6: Key engineering characteristics with its description	71
Table 3.7: Description of project measurement with its output	72
Table 3.8: Product design specification with description	72
Table 3.9: RF transceiver pinout connection to Arduino board	88
Table 3.10: Comparison of Bluetooth modules	90

Table 4.1: Values of the nominal diameter of the pipe	102
Table 4.2: Simulation on in-pipe inspection robot with regular wheels	108
Table 4.3: Stress and thermal stress analysis data for Omni-wheels	113
Table 4.4: Stress and thermal stress analysis data for mecanum wheels	118
Table 4.5: Summary for the half-pipe with 0° horizontal inclination	124
Table 4.6: Summary for the half-pipe with 10° horizontal inclination	128
Table 4.7: Summary for the half-pipe with 20° horizontal inclination	132
Table 4.8: Summary for the half-pipe with 30° horizontal inclination	136
Table 4.9: Summary for the half-pipe with 40° horizontal inclination	140
Table 4.10: Summary for the half-pipe with 0° horizontal inclination	146
Table 4.11: Summary for the half-pipe with 10° horizontal inclination	150
Table 4.12: Summary for the half-pipe with 20° horizontal inclination	154
Table 4.13: Summary for the half-pipe with 30° horizontal inclination	158
Table 4.14: Summary for the half-pipe with 0° horizontal inclination	164
Table 4.15: Summary for the half-pipe with 0° vertical inclination	170
Table 4.16: Summary for the half-pipe with 10° vertical inclination	174
Table 4.17: Summary for the half-pipe with 0° vertical inclination	180
Table 4.18: Summary for the half-pipe with 10° vertical inclination	185
Table 4.19: Summary for the half-pipe with 0° vertical inclination	191
Table 4.20: Ability to move at horizontal inclination	193
Table 4.21: Ability to move at vertical inclination	193

LIST OF FIGURES

Figure 1.1: (a) oil pipeline system, (b) gas pipeline system [2].	26
Figure 1.2: Type of locomotion [5].	27
Figure 1.3: (a) Oil pipeline causes, (b) Gas pipeline causes [6].	27
Figure 1.4: History of In-pipe robot research publications [6]	28
Figure 2.1: Parallel-link pipe inspection robot [8]	33
Figure 2.2: Type III inspection robot [9]	33
Figure 2.3: Pipe inspection robot based on hermit crab [10]	34
Figure 2.4: Magnetic wheel internal pipe inspection robot [11]	36
Figure 2.5: Small-sized in-pipe robot [12]	36
Figure 2.6: Wheel-type in-pipe robot [13]	37
Figure 2.7: Multi-jointed autonomous sewer inspection robot [14]	39
Figure 2.8: Dual clamping V-shape inspection robot [15]	39
Figure 2.9: Multilink-articulated wheeled in-pipe robot (AIRo-3) [16]	40
Figure 2.10: Wheeled multiarticulate robot [17]	42
Figure 2.11: Wheeled sewer inspection robot [18]	42
Figure 2.12: FAMPER [20]	43
Figure 2.13: Wheeled wall-pressed robot [21]	44
Figure 2.14: a) MagneBike with 3D laser range finder b) MagneBike without 3D	
laser range finder [24]	44
Figure 2.15: Wireless control magnetic crawler inspection robot [26]	45
Figure 2.16: Control board [27]	47
Figure 2.17: Arduino Micro ATmega32u4 microcontroller [29]	48
Figure 2.18: Hitec HS-225MG Servos [12]	50

Figure 2.19: LEGO pipeline inspection robot model from LDD [35]	51
Figure 2.20: Pipeline inspection gauge (PIG) robot [37]	52
Figure 2.21: CATIA V5 analysis of deformation and stress [38]	53
Figure 3.1: FYP 1 flowchart	59
Figure 3.2: FYP 2 flowchart	60
Figure 3.3: Overall project development flowchart	61
Figure 3.4: Prototype process flowchart	62
Figure 3.5: House of quality	70
Figure 3.6: Constraints on in-pipe inspection robot dimensions [44]	73
Figure 3.7: Forced diagram of pipeline inspection robot	76
Figure 3.8: Front unit in-pipe inspection robot	78
Figure 3.9: Rear unit in-pipe inspection robot	78
Figure 3.10: Articulated in-pipe inspection robot	79
Figure 3.11: Chassis of in-pipe inspection robot	79
اونبوس سيني نيڪني Figure 3.12: Dimension of chassis	80
Figure 3.13: Wheel module of in-pipe inspection robot	80
Figure 3.14: Dimension of wheel module	81
Figure 3.15: Back motor bracket of in-pipe inspection robot	81
Figure 3.16: Dimension of back motor bracket	82
Figure 3.17: Front motor bracket of in-pipe inspection robot	82
Figure 3.18: Dimension of front motor bracket	83
Figure 3.19: Bracket linkage of in-pipe inspection robot	83
Figure 3.20: Dimension of bracket linkage	84
Figure 3.21: Universal joint of in-pipe inspection robot	84
Figure 3.22: Dimension of universal joint	85

Figure 3.23: Arduino Nano	86
Figure 3.24: Arduino Nano pinout	86
Figure 3.25: MPU 6050	87
Figure 3.26: RF Transceiver 2.4G	89
Figure 3.27: HC-05	90
Figure 3.28: TT Dual Axis Gearbox Motor	91
Figure 3.29: L298N Motor Driver	91
Figure 3.30: 28BYJ-48 Stepper Motor and ULN2003 Driver Board	92
Figure 3.31: Block diagram for electronic components	93
Figure 3.32: Electronic schematic for the front unit robot	94
Figure 3.33: Electronic schematic for the rear unit robot	95
Figure 3.34: Position of half pipe in horizontal inclination	96
Figure 3.35: Hardware setup for horizontal inclination	96
Figure 3.36: Movement of articulated in-pipe inspection robot for horizontal	
اونيوم سيتي تيڪنيڪل ملمينا ملاك	97
Figure 3.37: Position of half-pipe in vertical inclination	97
Figure 3.38: Hardware setup for vertical inclination	98
Figure 3.39: Movement of articulated in-pipe inspection robot for vertical	
inclination	98
Figure 4.1: 120mm diameter of the vehicle unit	100
Figure 4.2: 150mm diameter of the vehicle unit	100
Figure 4.3: 200mm diameter of the vehicle unit	101
Figure 4.4: 300mm diameter of the vehicle unit	101
Figure 4.5: Stress test on in-pipe inspection robot without legs expansion (Regu	lar
wheels)	104

Figure 4.6: Stress test on in-pipe inspection robot with legs expansion (Regular	
wheels)	105
Figure 4.7: Thermal stress test on in-pipe inspection robot without legs expansion	1
(Regular wheel)	106
Figure 4.8: Thermal stress test on in-pipe inspection robot with legs expansion	
(Regular wheel)	107
Figure 4.9: Stress test on in-pipe inspection robot without legs expansion (Omni-	
wheels)	109
Figure 4.10: Stress test on in-pipe inspection robot with legs expansion (Omni-	
wheels)	110
Figure 4.11: Thermal stress test on in-pipe inspection robot without legs expansion	on
(Regular wheel)	111
Figure 4.12: Thermal stress test on in-pipe inspection robot with legs expansion	
(Omni-wheel)	112
Figure 4.13: Stress test on in-pipe inspection robot without legs expansion condit	ion
UNIVERSIUM Wheels) KAL MALAYSIA MELAKA	114
Figure 4.14: Stress test on in-pipe inspection robot with legs expansion (Mecanus	n
wheels)	115
Figure 4.15: Thermal stress test on in-pipe inspection robot without legs expansion	on
condition (Mecanum wheels)	116
Figure 4.16: Thermal stress test on in-pipe inspection robot with legs expansion	
(Mecanum wheels)	117
Figure 4.17: Gyroscope sensor's angle of the front module	119
Figure 4.18: Gyroscope sensor's angle of the rear module	119

Figure 4.19: Front module with 10cm stopping distance at 0° horizontal	
inclination	120
Figure 4.20: Rear module with 10cm stopping distance at 0° horizontal	
inclination	121
Figure 4.21: Distance travelled versus time graph for 10cm stopping distance	121
Figure 4.22: Front module with 15cm stopping distance at 0° horizontal	
inclination	121
Figure 4.23: Rear module with 15cm stopping distance at 0° horizontal	
inclination	122
Figure 4.24: Distance travelled versus time graph for 20cm stopping distance	122
Figure 4.25: Front module with 20cm stopping distance at 0° horizontal	
inclination	122
Figure 4.26: Rear module with 20cm stopping distance at 0° horizontal	
inclination	123
Figure 4.27: Distance travelled versus time graph for 20cm stopping distance	123
Figure 4.28: Front module with 10cm stopping distance at 10° horizontal	
inclination	125
Figure 4.29: Rear module with 10cm stopping distance at 10° horizontal	
inclination	125
Figure 4.30: Distance travelled versus time graph for 10cm stopping distance	125
Figure 4.31: Front module with 15cm stopping distance at 10° horizontal	
inclination	126
Figure 4.32: Rear module with 15cm stopping distance at 10° horizontal	
inclination	126
Figure 4.33: Distance travelled versus time graph for 15cm stopping distance	126

Figure 4.34: Front module with 20cm stopping distance at 10° horizontal	
inclination	127
Figure 4.35: Rear module with 20cm stopping distance at 10° horizontal	
inclination	127
Figure 4.36: Distance travelled versus time graph for 20cm stopping distance	127
Figure 4.37: Front module with 10cm stopping distance at 20° horizontal	
inclination	129
Figure 4.38: Rear module with 10cm stopping distance at 20° horizontal	
inclination	129
Figure 4.39: Distance travelled versus time graph for 10cm stopping distance	129
Figure 4.40: Front module with 15cm stopping distance at 20° horizontal	
inclination	130
Figure 4.41: Rear module with 15cm stopping distance at 20° horizontal	
inclination	130
Figure 4.42: Distance travelled versus time graph for 15cm stopping distance	130
Figure 4.43: Front module with 20cm stopping distance at 20° horizontal	
inclination	131
Figure 4.44: Rear module with 20cm stopping distance at 20° horizontal	
inclination	131
Figure 4.45: Distance travelled versus time graph for 20cm stopping distance	131
Figure 4.46: Front module with 10cm stopping distance at 30° horizontal	
inclination	133
Figure 4.47: Rear module with 10cm stopping distance at 30° horizontal	
inclination	133
Figure 4.48: Distance travelled versus time graph for 10cm stopping distance	133

Figure 4.49: Front module with 15cm stopping distance at 30° horizontal	
inclination	134
Figure 4.50: Rear module with 15cm stopping distance at 30° horizontal	
inclination	134
Figure 4.51: Distance travelled versus time graph for 15cm stopping distance	134
Figure 4.52: Front module with 20cm stopping distance at 30° horizontal	
inclination	135
Figure 4.53: Rear module with 20cm stopping distance at 30° horizontal	
inclination	135
Figure 4.54: Distance travelled versus time graph for 20cm stopping distance	135
Figure 4.55: Front module with 10cm stopping distance at 40° horizontal	
inclination	137
Figure 4.56: Rear module with 10cm stopping distance at 40° horizontal	
inclination	137
Figure 4.57: Distance travelled versus time graph for 10cm stopping distance	137
Figure 4.58: Front module with 15cm stopping distance at 40° horizontal	
inclination	138
Figure 4.59: Rear module with 15cm stopping distance at 40° horizontal	
inclination	138
Figure 4.60: Distance travelled versus time graph for 15cm stopping distance	138
Figure 4.61: Front module with 20cm stopping distance at 40° horizontal	
inclination	139
Figure 4.62: Rear module with 20cm stopping distance at 40° horizontal	
inclination	139
Figure 4.63: Distance travelled versus time graph for 20cm stopping distance	139

Figure 4.64: Front module with 10cm stopping distance at 0° horizontal	
inclination	142
Figure 4.65: Rear module with 10cm stopping distance at 0° horizontal	
inclination	142
Figure 4.66: Distance travelled versus time graph for 10cm stopping distance	143
Figure 4.67: Front module with 15cm stopping distance at 0° horizontal	
inclination	143
Figure 4.68: Rear module with 15cm stopping distance at 0° horizontal	
inclination	143
Figure 4.69: Distance travelled versus time graph for 15cm stopping distance	144
Figure 4.70: Front module with 20cm stopping distance at 0° horizontal	
inclination	144
Figure 4.71: Rear module with 20cm stopping distance at 0° horizontal	
inclination	144
Figure 4.72: Distance travelled versus time graph for 20cm stopping distance	145
Figure 4.73: Front module with 10cm stopping distance at 10° horizontal	
inclination	147
Figure 4.74: Rear module with 10cm stopping distance at 10° horizontal	
inclination	147
Figure 4.75: Distance travelled versus time graph for 10cm stopping distance	147
Figure 4.76: Front module with 15cm stopping distance at 10° horizontal	
inclination	148
Figure 4.77: Rear module with 15cm stopping distance at 10° horizontal	
inclination	148
Figure 4.78: Distance travelled versus time graph for 15cm stopping distance	148

Figure 4.79: Front module with 20cm stopping distance at 10° horizontal	
inclination	149
Figure 4.80: Rear module with 20cm stopping distance at 10° horizontal	
inclination	149
Figure 4.81: Distance travelled versus time graph for 20cm stopping distance	149
Figure 4.82: Front module with 10cm stopping distance at 20° horizontal	
inclination	151
Figure 4.83: Rear module with 10cm stopping distance at 20° horizontal	
inclination	151
Figure 4.84: Distance travelled versus time graph for 10cm stopping distance	151
Figure 4.85: Front module with 15cm stopping distance at 20° horizontal	
inclination	152
Figure 4.86: Rear module with 15cm stopping distance at 20° horizontal	
inclination	152
Figure 4.87: Distance travelled versus time graph for 15cm stopping distance	152
Figure 4.88: Front module with 20cm stopping distance at 20° horizontal	
inclination	153
Figure 4.89: Rear module with 20cm stopping distance at 20° horizontal	
inclination	153
Figure 4.90: Distance travelled versus time graph for 20cm stopping distance	153
Figure 4.91: Front module with 10cm stopping distance at 30° horizontal	
inclination	155
Figure 4.92: Rear module with 10cm stopping distance at 30° horizontal	
inclination	155
Figure 4.93: Distance travelled versus time graph for 10cm stopping distance	155

Figure 4.94: Front module with 15cm stopping distance at 30° horizontal	
inclination	156
Figure 4.95: Rear module with 15cm stopping distance at 30° horizontal	
inclination	156
Figure 4.96: Distance travelled versus time graph for 15cm stopping distance	156
Figure 4.97: Front module with 20cm stopping distance at 30° horizontal	
inclination	157
Figure 4.98: Rear module with 20cm stopping distance at 30° horizontal	
inclination	157
Figure 4.99: Distance travelled versus time graph for 20cm stopping distance	157
Figure 4.100: Front module with 10cm stopping distance at 0° horizontal	
inclination	160
Figure 4.101: Rear module with 10cm stopping distance at 0° horizontal	
inclination	160
Figure 4.102: Distance travelled versus time graph for 10cm stopping distance	161
Figure 4.103: Front module with 15cm stopping distance at 0° horizontal	
inclination	161
Figure 4.104: Rear module with 15cm stopping distance at 0° horizontal	
inclination	161
Figure 4.105: Distance travelled versus time graph for 15cm stopping distance	162
Figure 4.106: Front module with 0.2m stopping distance at 0° horizontal	
inclination	162
Figure 4.107: Rear module with 0.2m stopping distance at 0° horizontal	
inclination	162
Figure 4.108: Distance travelled versus time graph for 20cm stopping distance	163

Figure 4.109: Front module with 10cm stopping distance at 0° vertical inclination	166
Figure 4.110: Rear module with 10cm stopping distance at 0° vertical inclination	167
Figure 4.111: Distance travelled versus time graph for 10cm stopping distance	167
Figure 4.112: Front module with 15cm stopping distance at 0° vertical inclination	167
Figure 4.113: Rear module with 15cm stopping distance at 0° vertical inclination	168
Figure 4.114: Distance travelled versus time graph for 15cm stopping distance	168
Figure 4.115: Front module with 20cm stopping distance at 0° vertical inclination	168
Figure 4.116: Rear module with 20cm stopping distance at 0° vertical inclination	169
Figure 4.117: Distance travelled versus time graph for 20cm stopping distance	169
Figure 4.118: Front module with 10cm stopping distance at 10° vertical	
inclination	171
Figure 4.119: Rear module with 10cm stopping distance at 10° vertical	
inclination	171
Figure 4.120: Distance travelled versus time graph for 10cm stopping distance	171
Figure 4.121: Front module with 15cm stopping distance at 10° vertical	
UNIVERSITITEKNIKAL MALAYSIA MELAKA	172
Figure 4.122: Rear module with 15cm stopping distance at 10° vertical	
inclination	172
Figure 4.123: Distance travelled versus time graph for 15cm stopping distance	172
Figure 4.124: Front module with 20cm stopping distance at 10° vertical	
inclination	173
Figure 4.125: Rear module with 20cm stopping distance at 10° vertical	
inclination	173
Figure 4.126: Distance travelled versus time graph for 20cm stopping distance	173

Figure 4.127: Front module with 10cm stopping distance at 0° vertical inclination 176