DEVELOPMENT OF ARDUINO FLIGHT CONTROLLER FOR QUADCOPTER DRONE SYSTEM

AIMAN ARIF BIN ABDUL KHALID

BACHELOR OF ELECTRICAL ENGINEERING WITH HONOURS UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020/2021

Development Of Arduino Flight Controller For Quadcopter Drone System

AIMAN ARIF BIN ABDUL KHALID

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020/2021

DECLARATION

I declare that this thesis entitled "Development of Arduino Flight Controller for Quadcopter Drone System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this report entitled "Development of Arduino Flight Controller for Quadcopter Drone System" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degree of Bachelor of Mechatronics Engineering with Honours

DEDICATIONS

To my beloved father, Abdul Khalid Bin Mansor and my mother Norlaila Binti Sa'arani.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere thanks to my supervisor, Dr. Auzani bin Jidin for his guidance, understanding, patience and, most importantly, positive encouragement and warm spirit to complete this thesis. Having him as my supervisor was a great pleasure and honor.

My heartfelt thanks go to all the members of my family. Without their encouragement, it would not be possible to write this dissertation. My dearest mother, Norlaila binti Saarani, my father Abdul Khalid bin Mansor, I would like to thank you for all your countless efforts in shaping me to become who I am today with endless love without their supports I would not be here.

I also would like to express my thanks to my collegues Nur Yuhaniz Binti Ahmad Mutadza and Muhammad Affendy Bin Amir who have helped me in completing this thesis.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

AALAYSIA

ABSTRACT

Drones or Unmanned Aerial Vehicles (UAVs) are getting popular in several sectors such as aerial photography, cinematography, search and rescue operation, aerial surveillance, advertising, site surveying, mining, humanitarian projects, environmental projects, structural inspection, agriculture, courier servicing and etc. Most of the drone flight controllers in the market are have limited input and output pins and limited customization while good drone flight controllers are high in cost. The purpose of this study is to produce and build a low cost and customizable flight controller using C++ programming language and Arduino microcontroller. The process of this study was started with drone parts and components selection. Then, the code and circuit to test the BLDC motor, gyroscope sensor, remote controller were developed and designed. The BLDC motor speed was controlled by supplying PWM signal from Arduino microcontroller to the ESC. The gyroscope sensor were set to read the roll, pitch and yaw signal and display the signal through the serial plotter in the Arduino IDE. The remote controlled were tested to control the brightness of the LED. Arduino microcontroller were used to read input signal from the remote controller and convert it to PWM output signal to control the LED brightness. The drone hardware were assembled and the code for the flight controller were sketched. Five different test were done to test the code which are the throttle test, roll test, pitch test, yaw test and the PID test.

ABSTRAK

Dron atau Pesawat Udara Tanpa Pemandu (UAV) semakin popular dalam beberapa sektor seperti fotografi udara, sinematografi, operasi mencari dan menyelamat, pengawasan udara, pengiklanan, pengawasan tapak, perlombongan, projek kemanusiaan, projek alam sekitar, pemeriksaan struktur, pertanian, servis kurier dan sebagainya. Kebanyakan 'flight controller' dron yang terdapat di pasaran mempunyai pin masukan kan keluaran yang terhad dan mempunyai pengubahsuaian yang terhad. Tujuan pengajian ini adalah untuk menghasilkan dan membina 'flight controller' yang berkos rendah dan boleh diubahsuai menggunakan bahasa pengatucaraan C++ dan pengawal mikro Arduino. Proses pengajian ini dimulakan dengan pemilihan bahagian dan komponen dron. Kemudian, 'code' dan litar bagi menguji motor BLDC, sensor giroskop dan alat kawalan jauh dibangunkan dan dirancang. Kelajuan motor BLDC dikawal dengan cara membekalkan isyarat PWM dari pengawal mikro Arduino ke ESC. Sensor giroskop di tetapkan untuk membaca isyarat 'roll', 'pitch' dan 'yaw' dan paparkan ke 'serial plotter' pada Arduino IDE. Alat kawalan jauh diuji untuk mengawal kecerahan LED. Pengawal mikro Arduino digunakan untuk membaca isyarat masukan daripada alat kawalan jauh dan mengubah isyarat itu kepada isyarat keluaran PWM untuk mengawal kecerahan LED. Pemasangan deon dijalankan dan kod bagi 'flight controller' telah ditulis. Lima ujian telah dijalankan bagi menguji kod 'flight controller' tersebut iaitu ujan 'throttle', ujian 'yaw', ujian 'roll', ujian 'pitch' dan ujian PID.

TABLE OF CONTENTS

		11102
DECL	ARATION	
APPR	OVAL	
DEDI	CATIONS	
ACKN	IOWLEDGEMENTS	2
ABST	RACT	3
ABST	RAK	4
TADI		
		5
LIST (OF TABLES	8
LIST (OF FIGURES	9
LIST (OF SYMBOLS AND ABBREVIATIONS	13
LIST (OF APPENDICES	14
СНАР	TEP 1 INTRODUCTION	15
1.1	Overview	15
1.2	Background	15
1.3	Motivation	16
1.4	Problem Statement	16
1.5	Objective	16
1.6	ScopesERSITI TEKNIKAL MALAYSIA MELAKA	17
1.7	Project Outline	17
CHAP	TER 2 LITERATURE REVIEW	19
2.1	Dropos	19
2.2	Multirotor Drones	19
2.3 2.4	Drones Hardware	21
2.1	2.4.1 Multirotor Drones Frame	21
	2.4.2 Flight Controller	23
	2.4.3 Remote Controller	24
	2.4.4 Gyroscope Sensor	25
	2.4.5 Drone Motor	26
	2.4.6 Electronic Speed Controller	27
a -	2.4.7 Battery	28
2.5	Arduno Microcontroller	30
2.6	Quadcopter Flight Dynamics	32
	2.0.1 Quadcopter Fan Kotation	55 22
	2.0.2 Quadcopter finotite Control	<u> </u>

PAGE

	2.6.3 Quadcopter Pitch Control	34	
	2.6.4 Quadcopter Roll Control	34	
27	2.6.5 Quadcopter Yaw Control PID Controller	35	35
CHA	PTER 3 METHODOLOGY		38
3.1	Overview		38
3.2	Project Gantt Chart		38
	3.2.1 Project Gantt Chart FYP 1	38	
	3.2.2 Project Gantt Chart FYP 1	39	
3.3	Project Flowchart		40
3.4	Drone Block Diagram		41
3.5	Drone Hardware		42
	3.5.1 BLDC Motor	44	
	3.5.2 Simonk 20A ESC	46	
3.6	Arduino PWM Signal Control		47
	3.6.1 Circuit Diagram	48	
	3.6.2 Code	48	
	3.6.2.1 Declaration	49	
	3.6.2.2 Void Setup	49	
	3.6.2.3 Void Loop	49	
3.7	Arduino PWM Signal Control		50
	3.7.1 Circuit Diagram	50	
	3.7.2 Code	51	
	a.7.2.1 Declaration	51	
	3.7.2.2 Void Setup	52	
	3.7.2.3 Void Loop	53	
3.8	Arduino Gyroscope Sensor		54
	3.8.1 Circuit Diagram	54	
	3.8.2 Code	55	
	3.8.2.1 Declaration	55	
	UNIVI3.8.2.2 Void Setup RAL MALAT SIA MELAKA	56	
	3.8.2.3 Void Loop	56	
3.9	Remote Controller		57
	3.9.1 Circuit Diagram	59	
	3.9.2 Code	59	
	3.9.2.1 Declaration	59	
	3.9.2.2 Void Setup	60	
2 10	3.9.2.3 Void Loop	60	C 1
3.10	Drone Circuit	(\mathbf{c})	61
	3.10.1 Power Circuit	62	
	3.10.2 Remote Receiver Circuit	02 62	
2 1 1	5.10.5 DLDC MOUT CITCUIL Drong Hardward Assembly	03	C A
5.11 2.12	Dione Hardware Assembly Elight Controllor Code		04 22
5.12	Fight Controller Code	66	00
	3.12.1 UN allu OFF Code 3.12.2 Domote Deceiver and Greecope Decd Code	00 67	
	3.12.2 Remote Receiver and Groscope Read Code 3.12.3 Throttle Code	07 69	
	3.12.3 THOME COUL 3.12.4 DID Code	00 60	
3 1 2	Signal	09	70
5.15	Signai		70

CHAF	TER 4 RESULTS AND DISCUSSIONS		71
4.1	Overview		71
4.2	Arduino PWM		71
4.3	Arduino BLDC Speed Controller		74
4.4	Arduino Gyroscope Sensor		74
4.5	Arduino Gyroscope Sensor		76
4.6	Throttle Test		77
4.7	Yaw Test		78
4.8	Pitch Test		80
4.9	Roll Test		82
4.10	Drone PID Test		84
	4.10.1 Nose Lifted	84	
	4.10.2 Tail Lifted	86	
	4.10.3 Right Wing Lifted	87	
	4.10.4 Left Wing Lifted	88	
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS			
5.1	Conclusion		90
5.2	Future Work		91
REFERENCES			
APPE			96
	اونيۆم سيتي تيڪنيڪل مليسيا ملاك		

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

Table 2-1 : Comparison of multirotor drones	22
Table 2-2 : Arduino Uno specifications	31
Table 3-1: Project Gantt chart sem 1	38
Table 3-2: Project Gantt chart sem 2	39
Table 3-3: Quadcopter drone hardware and components list	42
Table 3-4: Specifications of A2212 BLDC motor	44
Table 3-5: Simonk 20A ESC specification	46
Table 3-6 : Flysky FS-iA6B specifications	58
Table 4-1 : Input signal, output signal and output voltage relationship	72
Table 4-2: PWM output voltage Table 4-3: Throttle control signal waveform	73 77
Table 4-4: Yaw control signal waveform	79
اوينوم سيني نيڪTable 4-5: Yaw control signal waveform	81
Table 4-6: Roll control signal waveform	83
Table 4-7: Nose lifted PID signal waveform	85
Table 4-8: Tail lifted PID signal waveform	86
Table 4-9: Right wing lifted PID signal waveform	88
Table 4-10: Left wing lifted PID signal waveform	89

LIST OF FIGURES

Figure 2-1 : Multirotor drones	20
Figure 2-2 : Drone basic hardware	21
Figure 2-3 : Types of multirotor drone	22
Figure 2-4 : Drone frame measurement	22
Figure 2-5 : Drone flight controller application	23
Figure 2-6 : Quadcopter orientation [17][18].	24
Figure 2-7 : Quadcopter and range of angles relation [17].	24
Figure 2-8 : Drone remote controller configuration	25
Figure 2-9 : Drone movements	25
Figure 2-10 : Brushed DC motor and BLDC motor	26
Figure 2-11 : Brushed DC motor and BLDC motor	27
Figure 2-12 : BLDC ESC vs Brushed DC ESC	27
Figure 2-13 : PWM trapezoidal and sinosoidal control	28
Figure 2-14 : Primary or non-rechargeable batteries	29
Figure 2-15 : Rechargable batteries	29
Figure 2-16 : Multi-Cell Lipo Battery Pack Arrangement	30
Figure 2-17 : Arduino board types	30
Figure 2-18 : Arduino IDE interface	31
Figure 2-19 : Airfoil principle	32
Figure 2-20 : Drone propeller principle	32
Figure 2-21 : Quadcopter rotor rotation	33
Figure 2-22 : Quadcopter throttle control	33
Figure 2-23: Quadcopter pitch control	34

Figure 2-24 : Quadcopter roll control	34
Figure 2-25 : Quadcopter yaw control	35
Figure 2-26: PID controller equation	35
Figure 2-27: Drone PID controller block diagram	36
Figure 2-28: Drone PID algorithm	37
Figure 3-1 : Project flowchart	40
Figure 3-2 : Drone block diagram	41
Figure 3-3: A2212 BLDC motor	44
Figure 3-4: Simonk 20A ESC	46
Figure 3-5 : Arduino Uno board	47
Figure 3-6 : Arduino PWM voltage signal	47
Figure 3-7 : Connection of potentiometer and Arduino	48
Figure 3-8 : Arduino BLDC speed control circuit	50
Figure 3-9 : Time ON for max and min speed	52
ويبوس سيني Figure 3-10 : Comparison of ESC and servo pinout	53
Figure 3-11 : MPU6050 gyroscope sensor	54
Figure 3-12 : Arduino gyroscope sensor circuit	54
Figure 3-13 : Flysky FS-i6 and FS-iA6B	57
Figure 3-14 : FS-iA6B receiver pin configuration	57
Figure 3-15 : Sticks mode configuration	58
Figure 3-16 : Aux. channels configuration	58
Figure 3-17 : Arduino remote controller circuit	59
Figure 3-18: Drone schematic diagram	61
Figure 3-19: Power circuit schematic diagram	62
Figure 3-20: Remote receiver circuit	63

Figure 3-21: BLDC motor circuit	63
Figure 3-22: Change BLDC motor rotation	63
Figure 3-23: Quadcopter drone build top view	64
Figure 3-24: Quadcopter drone build side view	64
Figure 3-25: Flight Controller Assembly	65
Figure 3-26: Arduino Uno screw proto shield	65
Figure 3-27: Male and female pin header	65
Figure 3-28: DS212 Oscilloscope	70
Figure 4-1 : Potentiometer Arduino Connection	71
Figure 4-2 : PWM signal values	72
Figure 4-3 : PWM signal graph	72
Figure 4-4 : Arduino BLDC speed controller connection	74
Figure 4-5 : MPU6050 sensor connection	75
Figure 4-6: Pitch, roll and yaw values	75
اونيوس سيني تيڪن Figure 4-7: Pitch, roll and yaw graphs	75
Figure 4-8 : Remote control connection MALAYSIA MELAKA	76
Figure 4-9 : Remote controlled PWM signal	76
Figure 4-10: Quadcopter throttle test	77
Figure 4-11: Quadcopter yaw test	78
Figure 4-12: Quadcopter pitch test	80
Figure 4-13: Quadcopter roll test	82
Figure 4-14: Quadcopter drone PID test	84
Figure 4-15: Nose lifted test	85
Figure 4-16: Tail lifted test	86
Figure 4-17: Right wing lifted test	87

LIST OF SYMBOLS AND ABBREVIATIONS

ESC	-	Electronic speed controller
BLDC	-	Brushless DC motor
DC	-	Direct current
AC	-	Alternate current
PWM	-	Pulse-Width Modulation
UAS	-	Unmanned Aerial Systems
UAV	-	Unmanned Aerial Vehicle
VTOL	-	Vertical Takeoff Landing
IMU	-	Internal measurement unit
RF	-	Radio frequency
LED	-	Light emitting diode
SRAM	-	Static random access memory
EEPROM	-	Electrically erasable programmable read-only memory
IDE	-	Integrated Development Environment
LCD	-	Liquid crystal display

LIST OF APPENDICES

APPENDIX A	ARDUINO TECHNICAL SPECIFICATION	96
APPENDIX B	A2212 BLDC MOTOR TECHNICAL DATA	97
APPENDIX C	MPU6050 SPECIFICATION	98

CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter provides the introduction of project background, the Development of Arduino Flight Controller for Quadcopter Drone System. It also includes the research motivation, problem statement, objective, scopes and outlines how the overall chapter is organized in this report.

1.2 Background

ALAYSIA

Drones, also called Unmanned Aerial Systems (UAS) or Unmanned Aerial Vehicle (UAS) are the aircrafts that able to fly without a pilot and passengers on board [1]. Drones concept were created when Venice were attacked by Austria in 1849 using unmanned balloons staffed with explosives [2]. Since that, the needs for drones with various abilities for both civilian and military applications are increasing.

a. Can

Drones offered wide range of services and application for various sectors which include search and rescue, real time monitoring, aerial surveillance, cinematography, advertising, site surveying, mining, humanitarian projects, environmental projects, structural inspection, courier servicing and other areas [3, 4, 5].

Since 1849, there are wide variety of drone configuration to fulfill variety of mission and platform. The drones were categorized into multiple classification which are Nano Air Vehicles (NAVs), Micro or Miniature Air Vehicles (MAVs), Vertical Take-Off & Landing (VTOL), LASE Close, Low Altitude Long Endurance (LALE), Low Altitude, Short-Endurance (LASE), Medium Altitude Long Endurance (MALE), and High Altitude, Long Endurance (HALE). The drones were classified based on its size, flight endurance and capabilities [6].

1.3 Motivation

Drone flight controller is the most important part of the drone system. Without flight controller, drone will never can be stabilize. There are a lot of specifications and brand of flight controller in the market. But, the price for a good and reliable flight controller is too high for a low cost drone. Price for flight controller board such as Pixhawk, Diatone and Matek can reach as high as RM300 to RM 500 per board.

1.4 Problem Statement

AALAYS/A

On the average, drone flight controller has limited intput and output pin due to its specific design for specific task. It is a problem to add other input or output components or devices when the input or output pins are fully used.

Other than that, common flight controller also has very limited customization. It is because, the flight controller hardware and firmware were already designed and build for a specific tasks.

There are many flight controllers from different types and brands available in the market. But, most of the good flight controller that have more input and output pins, features and customization are cost too high.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

This project was done to solve these issues by developing an alternative way which is flight controller from Arduino microcontroller which is cheaper, high customizability and have more input and output pins.

1.5 Objective

- 1. To develop a customizable flight controller using C++ language programming
- 2. To develop a low cost flight controller using Arduino microcontroller
- 3. To verify the capabilities of Arduino microcontroller as a drone flight controller

1.6 Scopes

This project mainly focuses on;

- 1. Design the circuit for the drone
- Produce PWM signal to control the speed of the brushed DC and BLDC motor
- 3. Gain signal from the gyroscope sensor using Arduino microcontroller
- 4. Gain signal from the remote controller using Arduino microcontroller
- 5. Assemble the drone hardware
- 6. Build PID controller code for drone stabilization

7. Perform throttle, yaw, pitch roll and PID test

1.7 Project Outline

In the next following chapter, the report is organized as follows;

Chapter 2: Provides the overview of constructions, parts and components of a drone and the theories behind it.

Chapter 3: Provides the details how the PWM signal, BLDC motor, gyroscope sensor and remote controller will be tested using Arduino microcontroller, the hardware assembly and the explanation about the flight controller code.

Chapter 4: Provides the finding and discussion on PWM signal produced by the Arduino microcontroller, the gyroscope signals, reading of the remote that controlled the LED brightness, the controlled speed of the BLDC motor, the result test for the throttle, roll, yaw, pitch and the PID test.

Chapter 5: Provides the conclusion of this thesis and recommendation for future work.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

In this chapter, the key studies related to this research are reviewed. It includes the studies on Pulse-Width Modulation (PWM), quadcopter flight dynamics, quadcopter frame, drone flight controller, gyroscope sensor, remote controller, electronic speed controller (ESC) for brushed motor and brushless DC motor, drone batteries, Arduino microcontroller and the PID controller.

2.2 Drones

Drones or Unmanned Aerial Systems also known as Unmanned Aerial Vehicle (UAV) or Unmanned Aerial Systems (UAS) are the aircrafts, which are able to fly without a pilot and passengers on board. The drone is controlled remotely by using radio waves or autonomously (with a predetermined route). Drones do not have a specific size or type of a drive [7].

2.3 Multirotor Drones

Multirotor drones as shown in Figure 2-1 are drones that use more than two rotors with fixed-pitch spinning blades that generate lift. It is possible to make the drone turn or move in a horizontal direction by varying the speeds of particular rotors. It is also possible to ascend, hover or descend the drone by changing the speed of the rotors so that the thrust generated is greater than, equal to or less than the forces of gravity and drag acting on the drone [8].

Figure 2-1 : Multirotor drones

WALAYS!

Most of the multi-rotor drones available in the market has at least four rotors such as Phantom drone made by the Chinese giant company, Da-Jiang Innovations or widely known as DJI [7]. To stabilise multirotor drones, it is required to use an onboard computer or flight controller because multirotor design are aerodynamically unstable. The flight controller includes gyroscope and accelerometer to maintain and estimate the position and orientation [9].

Multirotor designs appear to dominate the current markets for Vertical Takeoff Landing UAVs (VTOL UAVs) [10]. Multirotor drones do not need a takeoff or landing strip, make lesser noise and can easily hover in the midair compare to the other drones [7]. Multirotor drones offer a lot of advantages compared to other designs, but most of the multicopters, are limited to batteries as a power source due to its size, which will affect their flight endurance [8].