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ABSTRACT 

In this research, the development of myoelectric muscle sensor with IoT technology 

for continuous prediction of user motion intention is explored. The myoelectric sensor 

is designed to measure the EMG signals extracted from the forearm muscles due to the 

hand movement/grasping at different wrist angle, that is then combined with 

mechanical sensor modalities (accelerometer and hand dynamometer) for continuous 

movement predictions to ensure simultaneous movements can be realized. The circuit 

is designed using simulation software and constructed before analyzed by conducting 

several set of data collection. After the proof of concept is completed, the sensor is 

interfaced with IoT technology so that the data can be wirelessly acquired and stored 

in the cloud where it can be retrieved for rehabilitation assessment. The proposed 

research contributes towards the enhancement of control strategies to ensure 

simultaneous movements with proportional articulation that includes user motion 

intention can be realised to control the exoskeleton hand. It is towards the aim to 

provide better human-machine interaction for the hand impairment survivors in 

regaining their hand strength and functionality, and improve their quality of life. 
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ABSTRAK 

 

Dalam penyelidikan ini, pengembangan sensor otot myoelectric dengan teknologi IoT 

untuk ramalan berterusan niat gerakan pengguna diterokai. Sensor myoelectric direka 

untuk mengukur isyarat EMG yang diekstrak dari otot-otot lengan bawah yang 

disebabkan pergerakan tangan / mencengkam pada sudut pergelangan tangan yang 

berbeza, yang kemudian digabungkan dengan modaliti sensor mekanikal 

(accelerometer dan dynamometer tangan) untuk ramalan pergerakan berterusan untuk 

memastikan pergerakan serentak dapat dicapaikan. Litar ini dirancang menggunakan 

perisian simulasi dan dibina sebelum dianalisis dengan melakukan beberapa set 

pengumpulan data. Setelah pembuktian konsep selesai, sensor dihubungkan dengan 

teknologi IoT sehingga data dapat diperoleh dan disimpan di awan tanpa wayar di 

mana ia dapat diambil untuk penilaian pemulihan. Penyelidikan yang dicadangkan 

menyumbang ke arah peningkatan strategi kawalan untuk memastikan pergerakan 

serentak dengan artikulasi berkadar yang merangkumi niat gerakan pengguna dapat 

direalisasikan untuk mengendalikan tangan exoskeleton. Ini bertujuan untuk 

memberikan interaksi manusia-mesin yang lebih baik untuk mangsa cacat tangan 

dalam memulihkan kekuatan dan fungsi tangan mereka, dan seterusnya meningkatkan 

kualiti hidup mereka. 
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INTRODUCTION 

1.1 Project Background 

In the 21st century, health systems are confronted with new challenges such as 

global aging population, increase number of people with chronic condition and people 

living with disabilities are now more than ever before. Rehabilitation is required as the 

country grows and health systems expand, to ensure that people get the best possible 

result after an accident or illness. It means getting out of the hospital sooner with less 

risk of complications and less need for ongoing support. However, people do not have 

access to the rehabilitation services they need in many parts of the world, insufficient 

numbers of trained rehabilitation practitioners, inadequate facilities and obstacles to 

access such high out-of-pocket expenses are challenges that need to be addressed [1].  

According to the latest Institute for Health Metrics and Evaluation data 

published in 2020, stroke is the top 3 leading causes of death in Malaysia from 2009 

to 2019 as shown in Figure 1.1 [2]. Although stroke is the top 3 leading causes of death 

in Malaysia but there are a lot of people who survived stroke as shown in Figure 1.2 

where it is the most (62%) cases registered for domiciliary health care services [3]. 

People who survived stroke need to undergo rehabilitation to regain their speech, 

cognitive, motor, or sensory skills. Rehabilitation program for stroke often involve the 

training of strength, mobility, and range-of-motion exercises which are monitor by 

utilising the electromyography (EMG) signals. The EMG signals will record the 

electrical potential generated during muscle contraction. The EMG signals becomes 

continuously denser and the maximal peaks in the signal will have a higher amplitude 

when more force is used [4]. Thus, the properties of EMG signals are useful for doctors 

to keep track and evaluate the process in stroke rehabilitation of patient to ensure a fast 

and efficient recovery.  
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1.2 Motivation 

According to a survey performed in 2018, it is observed that the rehabilitation 

services provided within the state of Selangor and Federal Territories of Kuala Lumpur 

is distributed unevenly especially for the population of urban poor and people in the 

rural areas as shown in Figure 1.3 [5]. The costs for development, construction, and 

manpower would be high to set up new healthcare facilities. An alternative solution 

should be considered such as the use of a home-based virtual rehabilitation 

programme. Thus, to visualize this conception, the idea of designing a myoelectric 

circuit for user motion intention with IoT application is inspired. This development 

would be able to help doctor to monitor the patient recovery progress from a distant. 

Besides, the developed circuit can also be utilised as a control signal for prosthetic 

Figure 1.2: Cases Registered for Domiciliary Health Care Services, 

2017 in Malaysia [3] 

Figure 1.1: Cause of deaths from 2009-2019 in Malaysia [2] 
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devices such as prosthetic hands, arms, and lower limbs to achieve human-machine 

interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Problem Statement 

With the advancement of technologies and breakthroughs in healthcare today, 

the number of people who survived stroke had risen drastically over the year. This 

scenario had led to the increase in demand for rehabilitation or assistive devices. In a 

way to help the patience to recover efficiently, user motion intention needs to be 

considered to robustly control the assistive devices to be compatible for different 

people at different level of recovery progress. The user motion intention is observed 

by the outcome of EMG signals. However, raw EMG signals which is nonlinear and 

associated with noise is not suitable to be used to study its relationship with user 

motion intention. Thus, the raw EMG signals requires amplification, filtration, and 

rectification so that the signal generated is linear enveloped before it can be readily 

used as control input to control the assistive devices.  

At present, there are various of technique in processing the EMG signals. 

Despite the fact that there are a lot of commercially available EMG detecting circuit 

in the market but each and every of it had their own design specification and most of 

the devices does not include IoT application as a part of it. In addition, by adapting 

IoT into the EMG circuit will ease the process for data collection and enable physician 

Figure 1.3: Distribution for Rehabilitation Services [5] 
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to monitor and track the recovery of a patience from a distance which results in a better 

treatment and experience with lower expenses as it eliminates the cost for travel, 

hospital room and exorbitant doctor fees. Besides, during the wide spread of COVID- 

19 currently, the adaptation of IoT will also lower the risk of one getting affected. 

Therefore, to ensure seamless interaction between human-machine interaction by 

including motion intentions and IoT as part of research, the best method of design and 

gap analysis between research paper need to be contemplated by recognizing the 

strength and limitation of each so that the circuit designed could respond accordingly 

and correctly whenever the muscle contracted.   

 

1.4 Objective 

The objectives of this project are as follows:  

i. To design a myoelectric circuit for detection of user motion intention with IoT 

application. 

ii. To establish relationship between forearm EMG signal with different handgrip 

force and wrist position using the designed circuit.  

iii. To analyse the designed circuit in terms of accuracy and rms error. 

 

1.5 Project Scope 

The scopes of this project are as follows:   

i. All subjects are normally limbed in this experiment with no previous or present 

muscular injuries or diseases.  

ii. The electrode used in this experiment is subjected to surface electrode only 

which would not cause harm to subject.  

iii. The designed circuit is validated using the data collected by previous 

researcher using the EMG device by Vernier where the established relationship 

are compared and analysed.  
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LITERATURE REVIEW 

2.1 Introduction 

Throughout recent years, scientist have been utilizing EMG for diagnosis of various 

of neuromuscular diseases. There are a lot of method in acquiring the EMG signals as 

for this project will be focus primarily on the development of a myoelectric detection 

circuit with IoT applications for user motion intentions. In this chapter, the theories of 

EMG are explained and reviews of previous design approaches as well as associated 

issues is conducted. Based on the boon and bane discussed from the reviewed paper, 

an appropriate approach is selected to provide comprehensible design consideration 

and implementations. In addition, recent development and recommendations from 

each paper is also taken into account. By comparison study, a better understanding of 

EMG signal and its analysis procedure is produced which will help in designing a more 

powerful, flexible, and efficient myoelectric detection circuit.  

 

2.2 EMG Signal 

Electromyographic (EMG) signal are electrical potentials generated due to voluntary 

muscle contraction and is sometimes referred as myoelectric activity. This signal is 

normally a function of time and is describable in terms of its amplitude, frequency, 

and phase. The EMG signal is complicated as it is controlled by the nervous system 

and is dependent on the anatomical and physiological properties of muscles as shown 

in Figure 2.1 [6]. The amplitude of this signal usually ranges from 50 µV to 20-30 mV. 

As the amplitude of the raw EMG signal is too small, thus the EMG signal need to be 

processed before it can be used as a control input for the controller by amplification, 

filtration, rectification, smothering and etc. Thus, research have been carried out for 

developing better algorithms, upgrading existing methodologies, improving detection 

techniques to reduce noise, and to acquire accurate EMG signals [7]. The processed 

EMG signal can be then used to analyse or use to study the relationship of EMG signal 

properties with different muscle group. The amplitude of this biopotentials is 

proportional to the intensity of the contraction. EMGs are detected in a frequency range 
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between 20-450 Hz [6].  EMGs can be also utilize for clinical/biomedical applications, 

Evolvable Hardware Chip (EHW) development, and modern human-machine 

interaction [7]. According to the International Society of Electrophysiological 

Kinesiology [8], the minimum specifications for EMG signals are as below: 

➢ Input Impedance:  >1010𝛺 en DC y > 108𝛺 a 100 Hz 

➢ Amplification gain:  200-100.000 ± 10% on discrete 

➢ Gain nonlinearity:  ≤± 2.5% 

➢ Gain stability:   Variation should be 5%/year 

➢ CMRR:   >90dB 

 

 

 

 

 

 

 

 

 

 

 Figure 2.1: Characteristic of EMG signals [6] 

 

2.2.1 Anatomical and physiology background   

The central nervous system (CNS) is made up of the brain and the spinal cord. It 

controls most bodily functions which in includes awareness, movements, sensation, 

thoughts, speech, and memory. The function of the spinal cord is to send signals 

(messages) back and forth between the brain and peripheral nerves [9]. The biological 

signal from the brain is transmitted to the muscle fibers through neurons in the spinal 

cord resulting in the muscle’s movement/contraction when a person intends to move 

as shown in Figure 2.2 [10]. Neurons have a similar function to wires in an electronic 

circuit since both neurons and wires serve as the medium to transport signals [11]. 

Contraction of these activated fibers generates a voltage known as Motor Unit Action 

Potential (MUAP). The shapes and firing rates of Motor Unit Action Potentials 

(MUAPs) in EMG signals provide an important source of information for the diagnosis 
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of neuromuscular disorders [7]. The EMG signal is a summation of MUAPs. The 

amplitude of MUAPs is related to the muscle contraction [12]. The stronger the muscle 

contraction and the higher the number of activated muscles, the higher the recorded 

voltage amplitude will be [13]. 

 

Figure 2.2: Functional motor units which consists of motor units [10] 

 

2.2.2 EMG Measurement Technique 

The EMG electrode is used inside a human body's muscle to detect muscle response 

and bioelectrical activity. There are two main types of measurement technique which 

are the non-invasive method that involved the use of  surface (or skin electrode) and 

the invasive method that involved the use of inserted electrode. Surface electrode 

includes gelled and dry EMG electrode which can be either passive or active while 

inserted electrode includes needle and fine wire electrode [14]. The pros and cons of 

these electrode will be discussed and explained.  

 

2.2.2.1 Non-invasive Measurement Technique 

Surface electrode is often used in the study of muscle activity as it provides the only 

non-invasive index of the level of muscle activation present [15]. Besides, surface 

electrodes are better than needle electrodes for recording a compound muscle action 

potential as they register the total contributions from all discharging motor units [16]. 

Surface electrodes are applied to the skin of subject and may be in the form of 

electrolyte gel which purpose is to improve connection, or in the dry form which does 




