EFFECT OF BUTANOL OXYGENATES FOR B7 DIESEL ON ENGINE PERFORMANCE AND EXHAUST EMISSION

SYED HAFIZ HAKIMI BIN SYED NAJMUDDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this project report entitled "Effect of Butanol Oxygenates for B7 Diesel on Engine Performance and Exhaust Emission" is the result of my own work except as cited in the references

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Maintenance)

DEDICATION

Dengan nama Allah yang Maha Pemurah lagi Maha Pengasih.

To my beloved mother, father, and me.

ABSTRACT

The depletion of fossil fuel resources, along with stringent pollution regulations, has fueled the hunt for more excellent diesel engine performance and cleaner combustion. Using biodiesel/diesel/butanol blend is one of the most significant ways to address these concerns. Throughout this research, the impacts of biodiesel/diesel/butanol additives on the performance and emissions of diesel engines were thoroughly examined. Under varied load circumstances and at an engine speed of 1800 rpm-2200 rpm, the combustion performance and emission parameters of a diesel engine fuelled by butanol/diesel/biodiesel mixes were experimentally examined. Blending with butanol enhanced the evaporation and atomization properties of biodiesel and changed the combustion characteristics of the mixed fuels. The ignition delay of tested fuels increased as the butanol ratio increased. However, when engine loads surpassed 0.38 MPa brake means adequate pressure, the combustion time would decrease as the butanol ratio increased (BMEP). Butanol/diesel/biodiesel blends increased HC emissions under all engine load settings while reducing CO emissions except at 0.13 MPa BMEP for controlled gaseous pollutants. By mixing butanol at moderate and high engine loads, NO_x emissions were considerably enhanced. In particulate matter (PM) emission, the peak number concentration of particles smaller than 10 nm rose, whereas bigger particles fell progressively as the butanol ratio increased.

ABSTRAK

Kekurangan sumber bahan bakar fosil, bersama dengan peningkatan pencemaran yang teruk, telah mendorong pencarian prestasi enjin diesel yang lebih tinggi dan pembakaran yang lebih bersih. Menggunakan campuran biodiesel/diesel/butanol adalah salah satu kaedah terbaik untuk mengatasi masalah Sepanjang penyelidikan kesan ini. ini. campuran biodiesel/diesel/butanol terhadap prestasi dan pelepasan enjin diesel diperiksa secara menyeluruh. Dengan menggunakan beban yang berlainan dan pada kecepatan mesin 1800 rpm, prestasi pembakaran dan parameter pelepasan mesin diesel yang didorong oleh campuran butanol / diesel / biodiesel diperiksa secara mendalam. Campuran dengan butanol meningkatkan sifat penyejatan dan atomisasi biodiesel dan mengubah ciri pembakaran bahan bakar campuran. Kelewatan pencucuhan bahan api yang diuji meningkat apabila nisbah butanol meningkat. Namun, ketika beban mesin melepasi 0.38 MPa brek berarti tekanan efektif (BMEP), waktu pembakaran akan berkurang ketika nisbah butanol meningkat. Campuran butanol/diesel/biodiesel meningkatkan pelepasan HC di bawah semua tetapan beban enjin sambil menurunkan pelepasan CO kecuali pada 0.13 MPa BMEP untuk pencemaran gas terkawal. Dengan mencampurkan butanol pada beban enjin sederhana dan tinggi, pelepasan NO_x ditingkatkan. Dari segi pelepasan partikulat (PM), kepekatan bilangan puncak zarah yang lebih kecil daripada 10 nm meningkat, sedangkan zarah yang lebih besar jatuh secara progresif ketika nisbah butanol meningkat.

ACKNOWLEDGEMENT

First, praise and gratitude to the Almighty ALLAH s.w.t for allowing me to finish my Final Year Project 1 and give me the courage I need to perform my obligation as a Mechanical Student.

Here to my supervisor, sincere gratitude to Madam Nurul Hanim Binti Razak for her support, advice, feedback, and friendship to complete this project of mine.

Gratitude also towards all lecturers at the Bachelor of Mechanical Engineering for their lodging, recommendations, and thoughts throughout the university's advancement. Specifically, I would like to thank all the workers and technicians for their support, indirect or direct commitment to the success of my project.

Most significantly, I would like to dedicate many thanks to my family for their external encouragement when I informed them that I wanted to pursue my schooling, particularly my friends, to inspire me to complete this project. The theories might not have been realized without their help.

TABLE OF CONTENTS

APPROVAL DEDICATION ABSTRACT ABSTRAK ACKNOWLEDGEMENT LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS CHAPTERS 1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
ABSTRACT ABSTRAK ACKNOWLEDGEMENT IST OF TABLES LIST OF TABLES Vi LIST OF FIGURES CHAPTERS 1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
ABSTRAK ACKNOWLEDGEMENT LIST OF TABLES LIST OF TABLES Vi LIST OF ABBREVIATIONS CHAPTERS 1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
ACKNOWLEDGEMENT LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS CHAPTERS 1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS CHAPTERS 1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
LIST OF FIGURES vi LIST OF ABBREVIATIONS CHAPTERS 1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
LIST OF ABBREVIATIONS CHAPTERS 1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
CHAPTERS 1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
1. INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives
1.2 Problem Statement 1.3 Objectives
1.3 Objectives
10/NO
1.4 Scope of Project
1.5 Research Framework
2. LITERATURE REVIEW
2.1 Overview RSITI TEKNIKAL MALAYSIA MELAKA
2.2 Exhaust Emissions 1
2.3 Biodiesel 1
2.3.1 Effects of Biodiesel on Engine Performance and Emissions 1
2.3.2 The drawback of Biodiesel (NO _x emissions)
2.4 Fuel Additives
2.4.1 Types of Additives 1
2.4.2 Impact of Additive on Engine Performance and Exhaust Emission
2.5 Butanol as Fuel Additives (second-generation biofuel) 2
2.5.1 Previous Research on Alcohol as Fuel Additives
2.5.2 The Chemistry of Butanol as Fuel Additives
2.5.3 NO _x Reduction Technologies by Oxygenates 2

3.	ME'	THODOLOGY	28
	3.1	Overview	28
	3.2	Research Framework	28
	3.3	Gantt chart	30
	3.4	Fuel blend	32
	3.5	Blending process of butanol/diesel/biodiesel	33
	3.6	Experimental process	35
4.	DA	TA AND RESULTS	37
	4.1	Physical and chemical properties of fuel blend	37
	4.2	The effect of butanol on engine performance	39
		4.2.1 Ignition delay	39
		4.2.2 Brake specific fuel consumption (BSFC)	40
		4.2.3 Brake thermal efficiency (BTE)	42
		4.2.4 Combustion rate	44
	4.3	The effect of butanol on exhaust emissions	45
		4.3.1 Carbon monoxide (CO)	45
		4.3.2 Hydrocarbon (HC)	47
		4.3.3 Nitrogen oxide (NO _x)	49
_	00	4.3.4 Particulate matter (PM)	51
5.	5.1	ONCLUSION UVERSITI TEKNIKAL MALAYSIA MELAKA Overview	53 53
	5.2	Conclusion	53
DET			_ .
REF	FEREN		54

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Properties and mass percentages of oxygen of the ethyl acetate,	21
	methyl acetate, ethanol and MTBE additives (H.A. Dabbagh et al.,	
	2013)	
2.2	Comparison of properties of lower alcohols with those of diesel fuel (Kumar et al., 2013)	24
2.3	Exhaust emission reduction technologies by using oxygenates	27
3.1	Gantt chart for Project Sarjana Muda 1 (PSM 1)	30
3.2	اويور سيني فيڪنيڪ مليسيا ملاك Gantt chart for PSM 2	31
3.3	Table 3.3: Blending process of diesel/biodiesel/butanol	33
4.1	The properties of diesel, biodiesel, ethanol, and butanol	37
4.2	The physical and chemical properties of the blended fuels	38
4.3	The effect of diesel/biodiesel/butanol on ignition delay	39
4.4	The effect of diesel/biodiesel/butanol on BSFC	41
4.5	The effect of diesel/biodiesel/butanol on BTE	42
4.6	The effect of diesel/biodiesel/butanol on combustion rate	44
4.7	The effect of diesel/biodiesel/butanol on CO	46

4.8	The effect of diesel/biodiesel/butanol on HC	47
4.9	The effect of diesel/biodiesel/butanol on NO _x	49
4.10	The effect of diesel/biodiesel/butanol on PM	50

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	The size of particulate matter (PM) compared to human hair (United	12
	States Environmental Protection Agency, 2017)	
2.2	The relative proportion of emissions of NOx (A. EPA., 2002)	13
2.3	Schematic of the biodiesel production path (Okoro. L. N, 2017)	14
2.4	The relationship between the various types of NOx formation under	16
	the influence of varying combustion temperature ranges (Semakula, M., 2012)	
2.5	Average emissions impact of biodiesel for heavy-duty highway engines (EPA, 2002)	17
•	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	•
2.6	Production of diethyl ether from ethanol (B. Bailey, 1997)	20
3.1	Framework	29
3.2	fuel blend of butanol/diesel/biodiesel	32
3.3	Schematic diagram of engine test	34
3.4	Diesel engine for fuel blend	35
3.5	Gas analyzer	35
3.6	Result and Analysis of data produced	36
4.1	Variation of ignition delay against engine loads for different fuels	40

4.2	Variation of BSFC against engine loads for different fuels	41
4.3	Variation of BTE against engine loads for different fuels	43
4.4	Variation of combustion rate against engine loads for different fuels	44
4.5	Variations of CO emission for fuels at different engine load	46
4.6	Variations of HC emission for fuels at different engine load	48
4.7	Variations of NO _X emission for fuels at different engine load	50
4.8	Variations of PM emission for fuels at different engine load	52

LIST OF ABBREVIATIONS

	PM	Particulate matter
	NOxAYSIA	Nitrogen Oxide
5	CO	Carbon monoxide
Kul	НС	Hydrocarbon
Ŧ	SOx	Sulphur oxide
FIGO	BSFC	Brake specific fuel consumption
	BTE	Brake thermal efficiency
12	CN	Cetane number
_	CV	Calorific value
UN	OCRITI	Oxygen content ALAYSIA MELAKA
	CI	Compression ignition
BioD Biodiesel		Biodiesel

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Biodiesel is considered an alternative fuel equivalent to being traditional or 'fossil' diesel fuel and may be made from animal oil/fat, vegetable oil, waste cooking oil, and grease. Biodiesels are now a reality, drawing enormous recognition from the academy, community, and the industry. Several reasons contribute to this, but the most important ones are the market fluctuations of fossil fuels, the quest for lower emissions, and even the different alternatives for producing electricity.

Various biodiesel has been researched for the transport sector, including the automotive industry. This biodiesel can be extracted from renewable feedstock and not from fossil feedstock, as in petrol or diesel fuels. Ethanol and methanol are examples of alcohols that are most commonly used as biodiesel and widely known oxygenates. The soaring use of heavy and long-distance transportations on the road has caused alarming emissions onto the surrounding environment, especially the air quality. Since transportation such as a lorry or any other heavy and long-distance transportations are important to carry the byproduct of industry, they use a considerable amount of fossil fuel that produced the black smokes contain particulate matter (PM) which will cause a lot of airborne diseases.

Many studies have come out with identical chemical and physical properties of diesel fuel and biodiesel. Biodiesel has certain benefits compared to diesel fuel. Examples of the benefit include a high cetane number (CN), nearly no aromatics nor sulphur, and 10-11% oxygen by weight. These diesel fuel properties tend to minimize concentrations of PM, nitrogen oxides (NO_x), hydrocarbon (HC), and carbon monoxide (CO), similar to jet fuel.

However, biodiesel's effect impedes its usage as a total substitute for diesel fuel, such as kinematic viscosity and density at a high rate, including low calorific value. From that information, scientists and investigators have researched biodiesel mixing with diesel by adjusting the amount of biodiesel and diesel to examine their compatibility as fuel in current diesel engines (Hasan, M. M., 2017). Research claims that issues associated with biodiesel could be solved with the use of biodiesel-diesel mixtures. They found improved thermal performance and decreased PM, HC, CO, and NO_x emissions.

Ethanol has already been developed in some countries as an alternative fuel with several fuel benefits, especially engine performance and efficiency. And also, although not recognized by many, butanol could serve efficiently as green fuel for internal combustion engines due to its several benefits. Biomass-based green fuel also could be achieved and generated using fermentation of biomass feedstock. 1-butanol (or n-butanol), isobutanol and tert-butanol used to be fuel additives.

Among the list, n-butanol is the best option due to its effectiveness which is easily blended with diesel/biodiesel. It may also become a further alternative for diesel blending due to a higher oxygen content (OC) difference to biodiesel, possibly lead to a decrease in emissions, primarily soot. Butanol serves more evaporation heat than ethanol, thus reducing combustion temperature and may lead to a reduction in NO_x formation. As a result, despite ethanol advantages to the engine performance and efficiency, n-butanol may have some additional benefits as biodiesel compared to other bio-alcohols such as ethanol.

Compared to ethanol, butanol has a higher heating value. A higher heating value means more power can be generated because butanol can withstand higher temperatures than ethanol. Butanol also has lower viscosity properties than ethanol. Lower viscosity is better because the engine will not easily clog, especially for a country with seasonal weather

1.2 Problem Statement

In its tidy or mixed type with petrodiesel, Biodiesel is generally known as a substitute fuel for diesel engines. Due to the possibility of biodiesel being correlated with lower PM, CO_2 , and HC emissions, disadvantages occurred, including higher NO_x emission, lower heating value, lower volatility, and higher viscosity. Thus, to overcome these deficiencies and conform to rigorous environmental requirements, diesel/biodiesel additives have increasingly gained further interest due to their potential to boost engine efficiency and reduce dangerous pollution. Although careful pollution analysis can provide valuable knowledge on the environmental causes output of various fuel additives, decisions on this outcome may become quite complicated and challenging, as different fuel additives will have distinct pros and cons outcomes on contaminants produced along with the combustion phase.

Besides, several previous reports also concluded that while the biodiesel fuel engines that emit particulate are far lower than in oil, the NO_x emissions are rising dramatically. Adjusting the ignition delay in the pre-mixed combustion process, higher fuel burn rate, advanced combustion start, heat transfer radiation depletes, and the various adiabatic flame temperature is primarily in charge for the development of NO_x and from some more pollutants. Consequently, additives of fuels can have a significant key to play in counteracting specific problems and achieving various defined standards

1.3 Objectives

The objectives to achieve for this project are:

- a) To study the properties of butanol as oxygenated fuel additives for diesel/biodiesel blends.
- b) To investigate the effect of diesel/biodiesel/butanol on engine performance and exhaust emissions.
- c) To propose the near-optimal blend ratio of diesel/biodiesel/butanol for cleaner diesel blends design.
 1.4 Scope of Project
 This research covers the use of butanol as oxygenated fuel additives for

diesel/biodiesel blends in proposing a near-optimal blend ratio of diesel/biodiesel/butanol.

Obj.	Research Objectives	Research Scopes	
No.			
1	To study the properties of butanol	Butanol as an oxygenated fuel additive with its	
	as oxygenated fuel additives for	advantages and how its physiochemical	
	diesel/biodiesel blends.	properties influence the effectiveness of the B7	
		diesel/biodiesel blend that will contribute to the	
		improvement of engine performance and	
		exhaust emissions	

2	To investigate the effect of	Butanol is considered the best prospect for fuel
	diesel/biodiesel/butanol on	additives because of its physicochemical
	engine performance and	properties: the high degree of latent heat of
	exhaust emissions	evaporation, high burning rate, and especially
		oxygenated additives. The performance of the
		engine can improve significantly with the help
		of oxygenated additives. It also provides the
		solution for reducing the exhaust emission from
		industries because butanol is produced from
		various sources of biomass
3	To propose the near-optimal blend	By experimenting with different ratio of
	ratio of diesel/biodiesel/butanol	diesel/biodiesel/butanol, we can obtain an
	for cleaner diesel blends design.	optimal ratio of fuel blend for cleaner exhaust
	K.A.	emission
	5	

1.5 Research Framework

This thesis is separated into five chapters: an introduction, literature review, **WERSTITTEKNIKAL MALAYSIA MELAKA** methodology, result, and conclusion. Chapter 1 depicts the introduction, problem statement, objective, scope of the study, and report structure. Chapter 2 provides a literature review of the study which highlight theories, process, and some earlier research related to this study. Chapter 3 will discuss the method used in this research. The research on butanol as an oxygenated fuel additive for B7 diesel is explained in this chapter. Chapter 4 is about the result of butanol as an oxygenated fuel additive agent and resulted in NO_x and CO₂ exhaust emissions. Chapter 5 discusses the conclusion of the research and provides some potential future work to be going.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Cleaner fuel output has been commonly used in the world. The increased popularity of the usage of cleaner diesel is attributed to the fact that experts are conscious of the dangers of particulate matter (PM), carbon dioxide (CO_2), carbon monoxide (CO), nitrogen oxides (NO_x) and even sulphur oxides (SO_x) from cars to the atmosphere and human health (Mofijur et al., 2016). Numerous researchers have concentrated on seeking more effective ways to eliminate harmful pollution. The government has also begun to increase support for researchers to discover more alternate fuels than the common usage of fossil fuels because it is a non-renewable resource. The use of biodiesel/diesel blends would increase engine efficiency and pollution from heavy and long-distance transport. Also, engine efficiency and pollution from these blends rely on fuel composition, engine construction, and operating conditions.

Authors	Key Objectives	Methodology	Key Research Findings
(Giakoumis E.	To study the exhaust emission of	The exhaust emission data produced	The particulate matter (PM) is
G., 2013)	diesel engines produced under	by diesel engines were collected and	decreasing by using different
	transient conditions such as against	identified regarding significant	alcohols such as ethanol and butanol.
	acceleration, loads, and others	aspects of the transient operation and	As for NO_x emissions, the decreasing
	NALAYSIA	differentiating the properties of	and increasing of NOx is affected by
	and the states	alcohol concerning diesel oil used.	specific alcohol percentage and
	No. 1		temperature.
(Bannikov, M.	To compare and analyze the	Acting as a supplementary fuel,	Based on the research, the blending
& Gillani,	performance and emissions of diesel	ethanol and butanol are added into	process of ethanol and butanol were
2015)	engine affected by alcohols blending	diesel engines with different	significantly decreased PM, NO _x , and
	and fumigation	techniques such as dual injection,	CO emission while a slight increase
	1. 1. 1. 1.	blending, and fumigation	in HC produced. As for fumigation,
	ا ملسبا ملاك	ستر تىكنىك	reduction in NO _x emission depends
	0	<u>S</u>	on the engine loads and PM
	UNIVERSITI TEI	KNIKAL MALAYSIA M	emission, decreasing at all engine loads.
(Khalife E. &	To review the effects of	Additives are added into diesel	The impacts of oxygenated fuel
Tabatabaei	biodiesel/diesel additives on the	engines such as oxygenates additives,	additives such as alcohols help
M., 2017)	performance and emission of diesel	metallic and non-metallic based	reduce PM emissions and negatively
	engines	additives, water, antioxidants, and	increase the $\ensuremath{\text{NO}_x}$ and CO emissions

		polymeric based additives	produced. Besides, using water in the
			form of emulsion significantly
			improves engine performance
			compared with other additives. The
			use of antioxidants will only increase
	MALAYSIA		CO emission produce and does not
	SY NO.		significantly affect engine
	E V		performance and emission.
(Xue, J., Grift,	To analyze the effect of biodiesel on	Biodiesel is used in conventional	The lower heating value of biodiesel
T. E., &	engine power, economy, durability,	diesel engines without modification	compared to diesel will reduce the
Hansen, A. C.,	and emissions		engine power although biodiesel has
2011)	Alun .		no significant impact on engine
	del C I I	/ / .	power. As biodiesel has lower soot
	ملىسىا ملاك	ستق فتكتبك	formation and inherent lubricity
			compared to diesel, thus it will help
	UNIVERSITI TER	KNIKAL MALAYSIA N	to improve the durability of the engine. Lastly, the PM emission
			produced by biodiesel significantly
			reduced compared to diesel because
			of the higher cetane number and
			oxygen contents

(Hasan, M.	To study the emission characteristic,	CI engines employed with	The diesel/biodiesel blends in CI
M., &	engine performance, and properties	biodiesel/diesel blends	engines lead to the vast elimination
Rahman, M.	of diesel/biodiesel blends employed		of HC, CO, and PM emissions
M., 2017)	in CI engines		despite producing a higher NOx
			emission than diesel fuel. As for
	MALAYS/4		engine performance, the engine
	AL AL		performance made almost the same
	E V		as using diesel.
(Verma, P.,	To study alternative fuels such as		Oxygenated additives such as n-
Stevanovic, S.,	biodiesel, alcohols, and oxygenated		butanol have the best characteristic in
& Ristovski,	additives on PM emissions from		reducing PM emission because of
Z. D., 2019).	diesel engines.		theirs highest oxygen contents.
	Stolundo 1	ست تنکننک	اونيةم
(Singh, R.,	To determine the properties of	The preparation of n-butanol as an	Based on the research, diesel has a
Singh, S., &	eucalyptus biodiesel and compared	additive and eucalyptus biodiesel-	lower viscosity and density than
Kumar, M.,	with standard diesel whereby n-	diesel blends in diesel engine	biodiesel obtained from eucalyptus
2020).	butanol as an additive		oil and blends. The decrease of HC
			and CO does not affect the
			decreasing NOx, as the NOx
			emission increases. So, the addition
			of n-butanol in eucalyptus biodiesel-

			diesel blends will lower the NO _x emission produced
	MALAYSIA		
(Chang, Y. C.,	To investigate the use of water-	ABE as a biodiesel/diesel blend	Despite both biodiesel-diesel blends
Lee, W. J., &	containing ABE (acetone-butanol-		and ABE-biodiesel-diesel solution,
Chen, S. J.,	ethanol) solution as a biodiesel-diesel	engine to collect data.	improve the reduction of PM
2014)	blend additive to lower NO _x		emission but still for NO _x , resulting
	emissions from diesel engines		in higher emissions.
	19/10		

اونيوبرسيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA