

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF AN IOT-BASED SMART GARBAGE BIN SYSTEM WITH RFID AND GSM MODULE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

by

NOORAZUWEN BINTI AZIZ B071610695 950102-14-6190

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF AN IOT-BASED SMART GARBAGE BIN SYSTEM WITH RFID AND GSM MODULE

Sesi Pengajian: 2019

Saya NOORAZUWEN BINTI AZIZ mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK
TERHAD

Yang benar,

Disahkan oleh penyelia:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "DEVELOPMENT OF AN IOT-BASED SMART GARBAGE BIN SYSTEM WITH RFID AND GSM MODULE" is the result of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of UTeM as partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honors. The member of the supervisory is as follow:

ABSTRAK

"Smart Garbage Bin System with RFID and GSM Module" adalah prototaip baru bagi sistem kitar semula automatik yang boleh memisahkan tiga jenis bahan dan memberi ganjaran kepada pengguna justeru dapat mengurangkan sampah yang melimpah. Objektif utama projek ini adalah untuk memantau tahap sisa sampah sampah melalui laman web untuk memaklumkan telefon pintar pembersih untuk mengumpul tong sampah penuh. Sistem ini telah diintegrasikan dengan IoT untuk memantau tahap sampah melalui pangkalan data awan iaitu Adafruit IO. Selain itu, GSM akan memberitahu pekerja untuk mengumpul tong sampah dan data sistem ini akan dianalisis menggunakan platform Adafruit IO. Di samping itu, masa yang diambil untuk setiap jenis bahan yang dikesan dalam bin juga dianalisis untuk memastikan sistem ini berfungsi dengan cekap. Projek ini dilengkapi dengan kad pintar tanpa sentuh sebagai mata ganjaran elektronik untuk menarik komuniti melibatkan diri dalam aktiviti kitar semula. Kewujudan projek ini kerana peningkatan penduduk Malaysia dan bau busuk yang dihasilkan dari kawasan tercemar dengan limpahan sampah yang tidak terkawal menyebabkan penyakit tersebar. Teknologi IoT menyediakan pengguna dengan sistem pemantauan masa nyata. Agensi yang diberi kuasa boleh memantau tahap sampah tanpa memeriksa tong sampah secara beransur-ansur sewaktu mengumpul sisa. Selain itu, sampah juga dilengkapi dengan sistem penghantaran maklumat melalui mesej ringkas (SMS) kepada pekerja untuk membersihkan pengumpulan sampah yang penuh. Output yang dipaparkan kepada pengguna melalui paparan LCD adalah jenis bahan yang dikesan dan nilai yang dikumpulkan. Projek ini terdiri daripada dua sensor utama yang sensor jarak kapasitif kawasan dan sensor jarak induktif. Pengaturcaraan Arduino yang akan menjadi otak projek ini dan sensor IR digunakan untuk menentukan keadaan bahan. Kemudian, keadaan ini dirangsang oleh kedua-dua sensor jarak kapasitif dan induktif untuk menentukan jenis bahan yang dikesan. Selain itu, projek ini menggunakan sensor ultrasonik untuk mengesan tahap sampah di dalam tong maka akan menghantar status bin tahap kepada pihak berkuasa.

ABSTRACT

Smart Garbage Bin System with RFID and GSM Module is a new prototype of an automatic recycle system that can separate three different types of materials and giving rewards point to the users thus can reduce the overflowing trash. The main objective of this project is to monitor the level of the waste in the garbage bin through a web page for notifying the cleaner's smartphone to collect a full garbage bin. This system had been integrated with the Internet of Things (IoT) in order to monitor the trash level through a cloud database called Adafruit IO. Besides, GSM will notify the worker to collect garbage bin and the data of this system will be analyzed using Adafruit IO platform. In part of that, time taken for each type of material detected in bin also be analyzed to ensure this system performs efficiently. This project completed with a contactless smartcard as the electronic reward points to attract the community involves in recycling activity. Existence of this project because of the increasing in Malaysia's population and bad smell produced from the polluted area with an uncontrolled overflow of waste cause the disease is spread. An IoT technology provides the user with a real-time monitoring system. The authorized agency can monitor the trash level without check the garbage bin gradually during collects waste. In addition, the trash is also equipped with a system of transmission of information through short messages (SMS) to the workers to make cleanup of garbage collection which is full. The output that displays to the user through the LCD display is the type of material detected and the recent point collected. This project consists of two main sensors which area capacitive proximity sensor and inductive proximity sensor. Arduino programming will be the brain of this project and the IR sensor used to determine the condition of the material. Then, the condition is stimulated by both capacitive and inductive proximity sensor to determine the type of material detected. Besides, this project utilized ultrasonic sensor to detect the trash level in the bin then will send the status of the level bin to authorities.

DEDICATION

Every challenging work needs self-efforts as well as the guidance of elders, especially those who were very close to our hearts. My humble effort I dedicate to my sweet loving

Father & Mother,

Whose affection, love, encouragement, and prayers of day and night that give me strength and inspiration to be able to get such success and honor,

ACKNOWLEDGMENTS

First and foremost, I would like to praise to Allah S.W.T for giving me the ability and strength to do my final year project succeed and complete my report as required. I would like to express my gratitude to my supportive and caring supervisor Ts. Maslan Bin Zainon for providing his insightful knowledge and valuable assistance throughout this project under his guidance.

I would like to take a chance to thank all the lecturers who taught me in the past three years and a great contribution that qualifies me to do my final year project. On the other side of appreciation is extended to my parents Noorkalinah Binti Rupee@Sapiee and Aziz Bin Kusnin for their support and encouragement throughout my studies. Their advice and reminder always give me the strength to complete my final year project and studies. I would like to thank all senior students and classmates who helped me to clear out the questions and guide on the software that I use for this final year project and to a friend from Faculty of Mechanical Engineering, Afiq Hazwan bin Emohari who helped me in designing and constructing the structure of body hardware.

Thanks as well to all my friends for their guidance and knowledge they provide to me. Lastly, my thanks as well extend to whoever supported me and give some inspirational in doing my final year project and throughout my studies.

TABLE OF CONTENTS

		PAGE
TAB	LE OF CONTENTS	x - xiii
LIST	OF TABLES	xiv
LIST	OF FIGURES	xv - vii
LIST	OF APPENDICES	viii
LIST	OF ABBREVIATIONS	xix - xx
СНА	PTER 1 INTRODUCTION	1
1.1	Project Background	1 - 2
1.2	اوينوبر سيتي تيڪنيڪل مل Problem Statement	2 - 3
1.3	Objectives UNIVERSITI TEKNIKAL MALAYSIA MELAKA	3
1.4	Scope of Project	4
СНА	PTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
	2.1.1 Dustbin Application	5
2.2	Waste Issue	5 - 6
	2.2.1 Definition of Solid Waste	6
	2.2.2 Type of Solid Waste	7
2.3	Waste Management in Malaysia	8

2.4	IoT Based Smart Garbage and Waste Collection Bin			
2.5	IoT Ba	IoT Based Smart Garbage Management System		
2.6	Revers	Reverse Vending Machine		
2.7	Magne	tic Strip Card	12 - 13	
2.8	Contac	tless Smart Card	13	
2.9	Compo	onent Description	14	
	2.9.1	Microcontroller Arduino Mega 2560	14 - 15	
	2.9.2	LCD Display	15 - 16	
	2.9.3	HC-SR04 Ultrasonic Sensor	16	
	2.9.4	ESP 8266 Wi-Fi Module	17	
	2.9.5	SIM900A GSM GPRS Module	17 - 18	
	TEK	2.9.5.1 Difference between Mobile Phone or GSM/ GPRS	18 - 19	
	120	2.9.5.2 Benefit of using GSM Network compare to SMS	19	
	2.9.6	اونيومرسيتي تيڪنيڪل مليسي RFID RC-522	19 - 20	
СНА	PTER 3	NIVERSITI TEKNIKAL MALAYSIA MELAKA METHODOLOGY	21	
3.1	Introdu	iction	21 - 22	
3.2	Project	Planning	22 - 23	
	3.2.1	Selecting Smart Card Technology	24	
	3.2.2	Selecting Microcontroller	24	
3.3	Project	Design	25	
	3.3.1	Flowchart and Block Diagram	25 - 30	
3.4	Project	Implementation	30	
	3.4.1	Programming in Arduino Mega	30	

xi

3.5	List of Component Used		31
3.6	6 Component Details		32
	3.6.1	LCD Display Connection	32 - 34
	3.6.2	HC-SR04 Ultrasonic Sensor Connection	34 - 35
	3.6.3	ESP 8266 NodeMCU Wifi Module Connection	35 - 36
	3.6.4	SIM900A GSM GPRS Module Connection	36 - 37
	3.6.5	RFID RC-522 Connection	37 - 38

СНА	PTER 4 RESULT AND DISCUSSION	39
4.1	Introduction	39
4.2	Software Part	39
	4.2.1 Coding in Arduino Mega of sorting in three types of materials	39- 44
	4.2.2 Designing Prototype of Project	44
4.3	اونيوم سيخ تنڪنيڪ مليسيا ملاك	45
	4.3.1 Hardware of sorting in three types of materials	45 - 48
4.4	Testing Result	48
	4.4.1 Sorting Part	48 - 56
	4.4.2 IoT Part	56 - 64

4.4.3	Discussion	64 - 65

СНА	APTER 5 CONCLUSIONS AND RECOMMENDATION	66
5.1	Introduction	66
5.2	Conclusion	66 - 67
5.3	Limitation	67 – 68

5.4	Recommendation	68 - 69
5.5	Project Potential	69
REF	ERENCES	70 - 74
APP	ENDICES	75- 82

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1:	List of component used	31
Table 3.2:	Details of LCD terminals	32 - 33
Table 3.3:	Pin Connection between Ultrasonic Sensor and Arduino Board	34
Table 3.4:	Pin Connection between ESP 8266 NodeMCU and Arduino Board	35
Table 3.5:	Pin Connection between SIM 900A and Arduino board	36
Table 3.6:	Pin Connection between RFID and Arduino board	37
Table 4.1:	Sensitivity of range sensor	53
Table 4.2:	Time taken for 1 complete cycle each material sorted	54
Table 4.3:	اونيوسيني ليصنعا العنوسيي الملاك	55
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	Block diagram of the transmitter	9
Figure 2.2:	Block diagram of a receiver	9
Figure 2.3:	Flow chart of IoT based garbage management system	10
Figure 2.4:	Status updated on the website	11
Figure 2.5:	Data track of Magnetic Strip Card	12
Figure 2.6:	Contactless Smart Card Layout	13
Figure 2.7:	Pin layout of Arduino Mega 2560	14
Figure 2.8:	HD44780 Character LCD Display	16
Figure 2.9:	HR SC-04 Ultrasonic Sensor	16
Figure 2.10:	ESP 8266 NodeMCU Wi-Fi Module	17
Figure 2.11	VERSM/GPRS Module MALAYSIA MELAKA	18
Figure 2.12:	RFID Reader	20
Figure 3.1:	Main phases in methodology	21
Figure 3.2:	Flowchart of project planning	22 - 23
Figure 3.3:	Flowchart of the material detection	25 - 26
Figure 3.4:	Flow chart of an IoT-Based Smart Garbage Bin System	27
Figure 3.5:	Block diagram of IoT-Based Smart Garbage Bin system	28
Figure 3.6:	Pins of LCD	33

Figure 3.7:	Interface connection between LCD and Arduino Board	33
Figure 3.8:	Interface connection between Ultrasonic Sensor and Arduino Board	35
Figure 3.9:	Interface connection between ESP8266 NodeMCU and Arduino board	36
Figure 3.10:	Interface connection between SIM900A and Arduino Board	37
Figure 3.11:	Interface connection between RFID and Arduino Board	38
Figure 4.1:	Library declaration	40
Figure 4.2:	Starting condition of system	40
Figure 4.3:	RFID detecting user card	41
Figure 4.4:	Undetected material	42
Figure 4.5:	Detecting plastic material	42
Figure 4.6:	Detecting metal material	43
Figure 4.7:	ونيوس سيني تي Detecting paper material	43
Figure 4.8: UNIVE	Read Latest point and end of the system MELAKA	44
Figure 4.9:	Prototype design	44
Figure 4.10:	LCD display 'Welcome ^_^' and 'Please Touch Your Card' on screen	45
Figure 4.11:	LCD display 'Access Denied'	46
Figure 4.12:	LCD display 'Previous Point: '	46
Figure 4.13:	LCD display 'No Material Detected'	46
Figure 4.14:	LCD display 'Detecting Metal Material'	47
Figure 4.15:	LCD display 'Latest Point: 1'	47

Figure 4.16:	LCD display 'Thank You'	48
Figure 4.17	Block diagram for sorting part	49
Figure 4.18	Servo motor 2DOF	50
Figure 4.19	Paper detection	51
Figure 4.20	Plastic detection	51
Figure 4.21	Metal detection	52
Figure 4.22	Block diagram for IoT part	56
Figure 4.23	Level of garbage in serial monitor Arduino IDE	57
Figure 4.24	Received message from GSM	58
Figure 4.25	Connection hotspot between ESP8266 NodeMCU and smartphone	59
Figure 4.26	Status garbage in webpage	59
Figure 4.27	Monitoring using a smartphone	60
Figure 4.28 UNIVE	Time taken for smartphone receive a message	61
Figure 4.29	Time taken for smartphone receive a message	61
Figure 4.30	Data recorded at Taman Tasik Utama	62
Figure 4.31	Data recorded at Lobby FTK and Factory 4 FTK	63
Figure 4.32	Signal strength for conversation data at Lobby FTK and Factory 4 FTK	63
Figure 4.33	Percentage of Sorting Materials in 5 minutes	64

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX 1:	Turnitin Result	75 - 76
APPENDIX 2:	Gantt Chart	77
APPENDIX 3	Hardware Structure	78
APPENDIX 4:	Datasheet of ESP8266 Wi-Fi Module	79 - 80
APPENDIX 5:	Datasheet of SIM900A GPRS/GSM	81 - 82

LIST OF ABBREVIATIONS

- **GSM** Global Mobile Communications System
- SMS Short Message Service
- **IOT** Internet of Thing
- WTE Waste to Energy
- SWM Solid Waste Management
 - **3R** Reduce, Reuse and Recycling
- MSW Municipal Solid Waste

SWCorp Solid Waste Management and Public Cleansing Corportion

HTML Hypertext Markup Language

GPRS General Purpose Radio Service

- LCD Liquid Crystal Display
 - ID UNIVERSIT TEKNIKAL MALAYSIA MELAKA
- **RVM** Reverse Vending Machine
- PIN Personal Identification Number
- **PWM** Pulse Width Modulation
 - AC Alternating Current
- **DC** Direct Current
- **USB** Universal Serial Bus
- I/O Input/Output

mA	Mili-ampere
V	Volts
mm	Millimeter
TTL	Transistor Transistor Logic
RF	Radio Frequency
TCP/IP	Transmission Control Protocol/Internet Protocol
SOC	System On Chip
APSD	Antisocial Process Screening Device
VoIP	Voice Over IP
LAN	Local Area Network
MHz	Mega-Hertz
RFID	Radio Frequency Identification
IDE L	Integrated Development Environment
LEDUNIV	Light Emitting DiodeAL MALAYSIA MELAKA
3D	3 Dimension
DOF	Degree of Freedom

CHAPTER 1

INTRODUCTION

1.1 **Project Background**

At the present time, society's hygiene and every kind of pollution is a major concern and waste management is a crucial part involved in this cycle. Garbage is left unattended and unnoticed for a longer period of time. These wastes include leftover wastes from the public, industries, etc. As we can see, a waste disposal site for recyclable items is limited quantities somewhere. In fact that society has been mixing recyclable items with wet waste. This makes it difficult for garbage collectors to isolate recyclable items and food waste by taking a long time.

There are three types of recyclables in Malaysia, such as paper, plastics, and bottles, but very little recycling of waste. On average, Malaysians produce 30,000 tons of waste per day and only 5% of it is recycled (Waste Management in Malaysia: In the Dumps, 2015). Municipal solid waste (MSW) monopolizes Malaysia's overall waste composition by 64%, industrial waste by 25%, commercial waste by 8% and building waste by 3% (Khairul Bariyah Abd Hamid et al., 2015). At present, the waste management approach being used is landfill, but due to rapid development and lack of space for new landfills, Malaysian states switch to incineration due to rapid development and lack of room for new landfills (Abdelnaser Omran et al., 2007). Besides, the outdated system monitoring the wastes in garbage bins is complex, requiring human exertion, time and cost that is incompatible with today's technologies. This increases the risk of open pollution, as it takes a long time to collect. While there is no systematic schedule for collecting all kinds of garbage thus the overburdened garbage attracts animals and insects. (Mustafa M.R & Ku Azir K.N.F, 2017). In order to solve this problem, the Smart Garbage Bin System, a new system technology has been designed. This system can also provide a systematic route map for garbage collection due to population growth. However, we're going to make an IoT-based Smart Garbage Bin System and warnings the garbage collectors to the bin's fullness by identifying the trash level based on the bin's depth from anywhere in the world over the Internet. This system will notify the worker via mobile phone to collect garbage bin and at the same time, the ESP8266 NodeMCU is used to act as a Wifi module to update the status of bins through a webpage. The connection between the Global Mobile Communications System (GSM) bins will notify the worker by sending a short message (SMS) when the trash is full.

Smart Garbage Bin System has set up to the public area while GSM was fixed for garbage bin location to control room. Using techniques such as RFID (S. Abdouli, 2009) has successfully indicated that technology is capable of providing the authority with an efficient waste management facility, as well as being a contributing factor in recycling and waste management. Furthermore, worldwide experience has shown that rewarding is the most effective technique to maintain a great level of contribution to recycling activities.

1.2 Problem Statement

Waste management is a crucial area linked to the economic status of Malaysian and its population's routine. The Malaysian government has spent millions of Ringgits on recycling-related advertising and campaigns through the Ministry of Housing and Local Government. These efforts were aimed at increasing public involvement in recycling schemes but the majority of Malaysians are not involved. The most waste ends up in landfills and this is aggravated by the fact that most landfills are open dumps in Malaysia. Besides, the recent collection of garbage is inefficient, time is wasted and a huge amount of human energy is needed.

Solid waste management that impacts our society's health and environment has been one of the main concerns with our environment. These produce a polluted condition to a nearby location and release bad smell which can disseminate some fatal disease and human disease. In addition, waste detection, monitoring, and management are one of today's primary challenges. Moreover, the outdated waste monitoring system in waste bins is a complicated process and uses more human effort, time and cost that our current technology can easily avoid.

1.3 Objectives

This project's main goal is to implement a Smart Garbage Bin System with an-IoT that provides an efficient collection of waste management:

 To develop an "IoT-Based Smart Garbage Bin System with RFID and GSM Module System" with a contactless smartcard as the electronic reward points.

A.

- 2. To analyze and monitor the level of the waste in the garbage bin through a web page for notifying the cleaner's smartphone to collect full garbage bin.
- 3. To analyze the sorting time for each type of material in the garbage bin.

1.4 Scope of Project

The scopes of this project can be described as follows:

- The waste management system can be organized with smart garbage bin performance in focus area which is hypermarket and public places.
- 2. Process system of garbage level in a bin can be monitored in real-time by login webpage as safeguard authorized entries and the data stored on cloud storage safely.
- 3. This system will separate three types of material which are plastic, paper and metal that can be detected by sensors.
- 4. The data measured and collected by each sensor can analyze using Adafruit IO software after the completed system prototype.
- 5. The main hardware used to execute and compile all programmed code to controlling the whole system working are microcontroller Arduino Mega 2560 and Arduino UNO. Meanwhile, ESP8266 NodeMCU and GSM Module are used as a communication signal to transfer the data on a webpage and notify the worker when the dustbin has full.