

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF AUTOMATIC PROPER POSTURE DETECTION CHAIR

AALAYS /,

NAGEN RAJ A/L MANIMARAN B071610095 930816-14-5095

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN AND DEVELOPMENT OF AUTOMATIC PROPER POSTURE DETECTION CHAIR

Sesi Pengajian: 2019

Saya NAGEN RAJ A/L MANIMARAN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD*

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD

Yang benar,

Disahkan oleh penyelia:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled "Design and Development of Automatic Proper Posture Detection Chair" is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours. The member of the supervisory is as follow:

ABSTRAK

Judul untuk projek ini ialah 'Reka Bentuk dan Membangunkan Pengetua Pegesanan Posture Automatik' di mana semua tentang reka bentuk kerusi ergonomik yang boleh menghalang postur yang buruk yang buruk dan rasa tidak selesa bagi pelajar sekolah. Walau bagaimanapun, reka bentuk projek ini menggunakam kerja pepejal. Sesetengah sekolah redah masih meggunakan kerusi kayu untuk pelajar, kebanyakamnya tahun satu dan tahun dua di dalam kelas. Ketidakselesaan ini akan menyebabkan kesakitan punggung untuk pelajar apabila mereka duduk d kerusi kayu di dalam bilik darjah untuk masa yang lebih masa, sementara mereka mempunyai postur yang lemah apabila ketidakselesaan bermula. Mendapatkan penyelesaian daripada projek ini untuk pelajar sekolah dapat mengesan postur yang lemah, postur yang baik, dan pengedaran tekanan sambil duduk di atas kerusi kayu. Untuk mengesan mengesan postur yang lemah dan postur yang betul, sensor ultrasonik yang dipasang di belakang kerusi kayu dan sensitif sensitif daya dipasang pada kusyen untuk mengesan tekanan yang disebarkan. Disampin itu, faedahnya adalah apabila pelajar duduk di postur yang lemah yang ditunjukan oleh kelakuan visual dengan membawa dan audio dengan buzzer. Projek ini dianalisis megggunakan DAQ-Data Protocol untuk mengukur data Arduimo dan mempakarkan hasilnya dalam Microsoft Excel.

ABSTRACT

The title for this project is 'Design and Development of Automatic Proper Posture Detection Chair' where all about ergonomic chair design that can prevent poor siting posture and discomfort pain for school students. However, this design of the project uses solid work. Some primary schools still use wooden chairs for students, mostly year one and year two in the classroom. Although, year three until year six using plastic chair. This make discomfort will cause buttock pain for students when they sit on the wooden chair in a classroom for a longer time, while they have poor posture when discomfort begins. Getting a solution from this project for primary school students can detect poor posture, proper posture, and distribution of pressure while siting on a wooden chair and plastic chair. In order to detect poor posture and proper posture, the force sensitive resistors sensor mounted on backrest cushion and seat cushion to detect pressure distribution. In addition, when students sit in poor posture seating will produce alarm and turn on indicators. This analyzed project uses termite to calculate data from Arduino Uno and shows the output in Microsoft Excel.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved parents Sir Manimaran and Madam Rukumany, thank you very much for your support during this project

To school headmaster Madam Kogilan from Sjk(T) Durian Tunggal

To school curriculum department Sir Basri from Sekolah Kebangsaan Durian

Tunggal

To my supervisor, Prof. Madya Mohd Ariff Bin Mat Hanafiah To my friends who always helps me carry out this project

ACKNOWLEDGEMENT

First and foremost, to the honourable university of University Teknikal Malaysia Melaka (UTeM), I would like to express my profound appreciation. My thanks go especially to the continuous support, guidance and encouragement provided throughout the whole development process by my supervisor, Professor Madya Mohd Ariff Bin Mat Hanafiah. Without the assistance of Sir, my project may not have been successful. Finally, i want to thank once again all those who have helped me to complete my final year report directly or indirectly.

TABLE OF CONTENT

Abstrak	vi
Abstract	vii
Dedication	viii
Acknowledgement	ix
Table of Content	X - XV
List of Tables	xvi
List of Figures	xvii - xx
List Abbreviations, Symbols and Nomenclatures	xxi

CHAPTER 1: INTRODUCTION

1.1	Backgr	ound	MA HA	1
1.2	Problem	m Statei	ment	2
1.3	Object	ives		2
1.4	Scope	Ma		2
CHA	PTER 2	2: LITE	RTURE REVIEW	
2.1	Introd	uction	اوييۇم سيتى بېڭنىكل مليى	3
2.2	Theor	y _{EDei}		3
2.3	Aims,	Objecti	ves and Benefits of Ergonomic	4
2.4	The M	Iusculos	skeletal System	5
	2.4.1	Anator	my	5
	2.4.2	Joints		6
	2.4.3	Muscl	e	7
	2.4.4	Spine		8
		i.	Vertebrae	8
		ii.	Joints	8
		iii.	Disks	8
		iv.	Nerves	9

2.5	Human Po	osture	9
	2.5.1 Siz	x Different Type of Siting Posture	10
2.6	Weight Di	istribution	12
	i.	Poor Posture	12
	ii.	Proper posture	13
2.7	Sensor		14
	i.	Comparison of Three Types of Pressure Sensor	14
	ii.	Force Sensitive Resistor Sensor	15
	iii.	Reading an FSR	15
	iv.	Voltage Divider Circuit	16
	v.	Example of FSR Calculation	17
	vi.	FSR 402 Specifications	18
2.8	Design	AYSIA MA	
	i.	Comparison of Three Different Chairs	19
2.9	Microcont	troller	20
	era i.	Comparison Between PIC Microcontroller and Arduino UN	NO 20
	ii. (Arduino UNO	21
2.10	Past resear	اويىۋىرەسىتى تېكىنىكل ملىسىد	22
		Wearable Posture Identification System for Good Siting Po	osition
	UNIVER	CONTRAC MALATSIA MELAKA	22
	ii.	Implementation of an IOT Based Smart Chair	23-24
	iii.	Posturector the Posture Corrector	24-25
	iv.	Posture Monitor – (Makes you Sit Smart)	25-26
	V.	Real Time Monitoring of Posture to Improve Ergonomics	26-27
2.11	Compariso	on of Previous Research Methods	28
CHA	PTER 3: M	IETHODOLOGY	
3.1	Introduction	on	29
3.2	Flowchart		29-30
	3.2.1 Pro	ocess Explanation	31

	3.2.2 Problem Statemen	nt	31
	3.2.3 Literature Review	7	31-32
	3.2.4 Design of Chair U	Jsing Solid Works	32-33
	i. Woode	en Chair	33-34
	ii. Plastic	c Chair	34-35
	3.2.5 Design and develo	opment automatic proper posture detection	
	chair using Arduit	no UNO	36
	i. Woode	en Chair	37
	ii. Plastic	chair	38
3.3	Hardware Development		39
	i. Arduir	10 UNO	39
	ii. Conne	ction to Force sensitive resistor sensor	39
	iii. Conne	ction to Speaker	40
	iv. Conne	ection to led	40-41
	v. Conne	ection Switch Toggle with Battery	41
	vi. Develo	opment of Back Rest Cushion	41-42
	vii. Develo	opment of Seat Cushion	42-43
	viii. Electro	onic Part Attached at Wooden Chair and	
	Plastic	وليو م سيبي ليه Chair	43-44
3.4	Software Development	IIKAL MALAYSIA MELAKA	45
	i. Arduir	10 IDE	45
	ii. Solid V	Work	46
	iii. Termit	te	46-47
3.5	Bill of Material		47-48
3.6	Circuit Design		49-50
3.7	Coding and Function of I	DE Arduino	51
3.8	Testing the Prototype		52-54
3.9	Data Gathering		55
3.10	Setup Questionnaire		55-57
3.11	Data Collection		58
3.12	Constructing the Graph		58

3.13	Data Analysing	58
3.14	Summary	58

CHAPTER 4: RESULT & DISCUSSION

4.1	Introduction	59
4.2	Questionnaire	59-61
	i. Question 1	61
	ii. Question 2	62
	iii. Question 3	62-63
	iv. Question 4	63-64
	v. Question 5	64
	vi. Question 6	65
	vii. Question 7	66
4.3	Test Performance of the System	67-70
4.4	Analysis on wooden chair and plastic chair with primary school	
	Students	70
	i. Data monitoring	70-71
	4.4.1 Standard One	71-73
	i. Discussion Standard One	74
	4.4.2 Standard Two KNIKAL MALAYSIA MELAKA	74-76
	i. Discussion Standard Two	77
	4.4.3 Standard Three	77-79
	i. Discussion Standard Three	80
	4.4.4 Standard Four	80-82
	i. Discussion Standard Four	83
	4.4.5 Standard Five	83-85
	i. Discussion Standard Five	86
	4.4.6 Standard Six	86-88
	i. Discussion Standard Six	89

	ii. Overall Discussion Analysis 1	89-90
4.5	Analysis on Plastics Chair Normal BMI Student	90
	i. Body Mass Index (BMI) Equation	91
	4.5.1 Standard Six	91-93
	i. Discussion BMI	94
	ii. Overall Discussion Analysis 2	94-95
4.6	Analysis on Plastic Chair Overweight and Underweight Student	95
	i. Student Overweight (BMI) Equation	95-96
	ii. Student Underweight (BMI) Equation	96
	4.6.1 Overweight Student	96-98
	i. Discussion Overweight Student	99
	4.6.2 Underweight Student	99-101
	i. Discussion Underweight Student	102
	ii. Overall Discussion Analysis 3	102-103
4.7	Analysis on Poor Siting Posture	103
	4.7.1 Front Siting Posture	104
	4.7.2 Crossing Right Leg Siting Posture	104
	4.7.3 Crossing Left Leg Siting Posture	105
	4.7.4 Froward Lean Sitting Posture	105
4.8	Summary	106
СНА	PTER 5: CONCLUSION & FUTURE RECOMMENDATION	
5.1	Introduction	107
5.2	Conclusion	107
5.3	Future Recommendation	108

5.4 Project Potential 108

REFI	ERENCES	109
APPE	ENDICES	110
i.	Detail Drawing Wooden Chair	111
ii.	Detail Drawing Plastic Chair	112
iii.	Questionnaire	113-114

LIST OF TABLES

2.1	Six different type of siting posture	10-11
2.2	Comparison of three types of pressure sensor	14
2.3	FSR 402 Specifications	18
2.4	Comparison of three different chair	19
2.5	Comparison between PIC microcontroller and Arduino UNO	20
2.6	Comparison of previous research methods	28
3.1	Bill of Material	47-48
3.2	Table Showing the Coding and Function	51
4.1	Numerical values assigned to sensor pairs	67-68
4.2	Case value separate with poor posture and proper posture	68
4.3	Time Versus Posture and Cases Year 1	72
4.4	Time Versus Posture and Cases Year 2	75
4.5	Time Versus Posture and Cases Year 3	78
4.6	Time Versus Posture and Cases Year 4	81
4.7	Time Versus Posture and Cases Year 5	84
4.8	Time Versus Posture and Cases Year 6	87
4.9	Time Versus Posture and Cases Normal BMI	92
4.10	Time Versus Posture and Cases Overweight	97
4.11	Time Versus Posture and Cases Underweight	100

LIST OF FIGURES

2.1	Physical ergonomics	4
2.2	View of skeleton	5
2.3	Hinge joint elbow and knee	6
2.4	Hand movement terminology	7
2.5	Spine overview	9
2.6	Good posture and bad posture	10
2.7	Distribution of pressure for poor posture	12
2.8	Distribution of pressure for proper posture	13
2.9	Force sensitive resistor sensor	15
2.10	Resistance vs force curve for FSR 402	16
2.11	Voltage divider circuit and Vout vs Force curves for different R values	
	and data represents output for interlink 402 FSR and V+ equal to $5V$	17
2.12	Arduino UNO	21
2.13	Position with accelerometer and electrogoniometer	22
2.14	Smart chair system overview	24
2.15	System proposed by this project	25
2.16	Hardware interfacing	26
2.17	Load cell module block diagram	27
2.18	Flex sensor module block diagram MALAYSIA MELAKA	27
3.1	Flowchart of the total project	30
3.2	Literature review flowchart	32
3.3	Design of Automatic Proper Posture Detection Wooden Chair Solid	
	Works	33
3.4	Detail drawing of automatic proper posture detection wooden chair	34
3.5	Design of automatic proper posture detection plastic chair using solid	
	works	35
3.6	Detail drawing of automatic proper posture detection plastic chair	35
3.7	Overall process flowchart	36
3.8	Force sensitive resister sensor mounted at backrest cushion and seat	
	cushion for wooden chair	37

3.9	Force sensitive resister sensor mounted at backrest cushion and seat	
	cushion for plastic chair	38
3.10	Connection to force sensitive resistor sensor	39
3.11	Speaker and Arduino UNO connection	40
3.12	Led and Arduino UNO connection	41
3.13	Switch toggle with battery and Arduino UNO connection	41
3.14	Force sensitive resistors mounted in backrest cushion	42
3.15	Back rest cushion attached on wooden and plastic chair	42
3.16	Force sensitive resistors mounted in seat cushion	43
3.17	Seat cushion attached on wooden and plastic chair	43
3.18	Electronic part attached at wooden chair and plastic chair	44
3.19	Posture indicator for wooden chair and plastic chair	44
3.20	Software of Arduino IDE	45
3.21	Solid work software	46
3.22	Termite	47
3.23	Schematic diagram	49
3.24	prototype test flowchart correct posture detection chair	53-54
3.25	Questionnaire	57
4.1	اونيوم سيتي تيڪنيڪل مليسيا ملاك	60
4.2	GenderERSITI TEKNIKAL MALAYSIA MELAKA	60
4.3	Race	61
4.4	Chair comfortable	61
4.5	Chair make back pain	62
4.6	Sit in good posture	63
4.7	Which part pain when sitting on chair	64
4.8	Invention is useful to lead a better lifestyle	64
4.9	Automatic proper posture detection chair reduces spine pain and	
	chronic pain cases	65
4.10	Invention Beneficial	66
4.11	internal view of backrest cushion	69
4.12	internal view of seat cushion	69
4.13	overview of sensor location at wooden chair	69

4.14	overview of sensor location at plastic chair			
4.15	below show data start and end collected			
4.16	Proper siting posture student standard one			
4.17	Graph percentage versus time standard one			
4.18	Graph percentage poor posture and proper posture			
4.19	Proper sitting posture student standard two			
4.20	Graph percentage versus time standard two			
4.21	Graph percentage poor posture and proper posture			
4.22	Proper siting posture student standard three			
4.23	Graph weightage versus time standard three			
4.24	Graph percentage poor posture and proper posture			
4.25	Proper siting posture student standard four			
4.26	Graph weightage versus time standard four	82		
4.27	Graph percentage poor posture and proper posture	82		
4.28	Proper siting posture student standard five	83		
4.29	Graph weightage versus time standard five	85		
4.30	Graph percentage poor posture and proper posture	85		
4.31	Proper siting posture student standard six	86		
4.32	Graph weightage versus time standard six	88		
4.33	Graph percentage poor posture and proper posture	88		
4.34	Combination graph poor and proper posture year one until year six	90		
4.35	Proper siting posture normal BMI student			
4.36	Graph percentage versus time normal BMI student			
4.37	Graph percentage poor posture and proper posture			
4.38	Analysis 2 normal BMI student			
4.39	Proper siting posture overweight student	96		
4.40	Graph weightage versus time overweight student			
4.41	Graph percentage poor posture and proper posture			
4.42	Proper siting posture underweight student			
4.43	Graph weightage versus time underweight student			
4.44	Graph percentage poor posture and proper posture			
4.45	Analysis 3 student overweight and underweight versus percentage	103		

4.46	Front siting posture	104
4.47	Crossing right leg siting posture	104
4.48	Crossing left leg siting posture	105
4.49	Forward lean siting posture	105

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

DAQ	-	Digital data acquisition
IDE	-	Integrated development environment
%	-	Percentage
FSR	-	Force sensitive resistor
V	-	Voltage
DC	-	Direct current
Cm	-	Centimetres
Kg	-	kilogram
Ohm	ALAYS	unit electrical resistance
PIC	St. m-	Peripheral Interface Controller
IOT	- K	Internet of things
GND	<u>ا</u> - ۲	Ground
PWM	Fer -	Pulse width modulation
USB	AINN .	Universal serial bus
MHz	et la	Megahertz
LCD	- "	Liquid crystal display
USB	UNIVERSI	Universal serial bus/IALAYSIA MELAKA
IDE	-	Integrated development environment
SRAM	-	Static random-access memory

CHAPTER 1 INTRODUCTION

1.1 Background

Siting is the one act that everyone will always do their daily lives most probably offices and school. Normally students spend extend time by siting on the chair in classroom compare to other activities. Therefore, they are struggling to finish up school homework. There is high probability of getting neck and low back pain. Hereby, if such conditions continue, students will face many medical conditions affecting their present and future lives. Furthermore, if the students do not know the harmful effect of placing themselves in a wrong position, that problem will become harmful. Do the students know the good siting posture, and do they apply it if they are aware of it? There have been many studies on the effect of a bad sitting posture, but there is only dearth of study on student's awareness of good siting posture. Students need to be told and aware of an issue, only then will they follow it and apply it. Hence this study is to analyses the performance of the design system on the student siting posture. This report discusses about "Design and Development of Automatic Proper Posture Detection Chair" project. This project to set up prototype poor and proper posture detection chair among primary school students. In addition, the objective and scopes of this project is briefly described, how the project can be implemented.

1.2 Problem Statement

Students spend most of their time studying in the classroom, doing the homework and taking the exam. Muscles and other soft tissue are stretched or shortened even with to long periods of time during all these activities. It can get severe, particularly if the students sit in the posture of bad things. If the students still don't improve their siting posture, they will experience a lot of medical conditions that can affect their study life. Hence, the purpose of this study is design and development of automatic proper posture detection chair.

1.3 Objectives

The objective of this project:

- i. To set up a prototype of a proper posture detection chair.
- ii. To design and develop a proper posture detection chair using Arduino controller with suitable sensor.
- iii. To analyse the performance of the design system on the student siting posture.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.4 Scope

The important elements need to be considered in order to ensure the objectives are achieved:

- i. Build a prototype of proper posture detection chair that can be used mainly in primary school students and this project beneficial for school student that aged between 7 to 12 years old.
- ii. Solid work is used to design the hardware.
- iii. Analyse the suitable sensor attached to wooden chair and plastic chair with Arduino Uno controller.
- iv. Using Termite, all data signals are analysed and stored in excel.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Besides that, details and data from reading papers, books, articles, and some other were also collected in this part of the report. The idea is to have a good understanding of the fundamental connection to this project. The concept is basically taken from the writer anyway by combining and rephrasing it is entirely written in own words.

2.2 Theory

The word ergonomic originates from an ancient Greek, meaning rules or work. It is also known as factors of human design. Ergonomic aims to provide a suitable design for people who design systems, processes, equipment and environments. So that their requirements are limited, but also maximized. Therefore, the design focuses on the person or a group of people. This is often known as user-centered design.

Ergonomics is a science, thorough research, the design and the styling of the user (Limited, 2008). It is widely used in areas such as aviation and other transportation systems, sports, learning, public facilities, homes, recreation and workplaces. Ergonomic supports the whole community. There are three fields of ergonomics, physical ergonomics, cognitive ergonomics and organizational ergonomics. Related to physical ergonomics in this project. Figure 2.1 below show the physical ergonomics below is shown.