

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

THE DEVELOPMENT OF A SMART PLANT MONITORING SYSTEM USING IOT: THE PLANT WHISPERER

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automation and Robotics) with Honours.

ALAYSIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA MUHAMMAD AFIQ BIN ABDUL KADIR B071610529 970207385065

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: THE DEVELOPMENT OF A SMART PLANT MONITORING SYSTEM USING IOT: THE PLANT WHISPERER

Sesi Pengajian: 2019

Saya **MUHAMMAD AFIQ BIN ABDUL KADIR** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT* Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD*

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD

Yang benar,	Disahkan oleh penyelia:
MUHAMMAD AFIQ BIN ABDUL	UTeM
KADIR کل ملیسیا ملالہ Alamat Tetap:	NURUL KAUSAR BINTI AB MAJID Cop Rasmi Penyelia
TAMAN UDA SOFIAH, TI TEKNI	KAL MALAYSIA MELAKA
33000 KUALA KANGSAR,	
PERAK.	

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled THE DEVELOPMENT OF A SMART PLANT MONITORING SYSTEM USING IOT: THE PLANT WHISPERER is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Industrial Automation and Robotics) with Honours. The member of the supervisory is as follow:

ABSTRAK

Berkebun di dalam bangunan adalah satu aktiviti dimana seseorang individu menanam tumbuhan di dalam sebuah kawasan tertutup. Dalam era pemodenan ini, ramai individu mengisi masa lapang mereka dengan berkebun di dalam bangunan. Tetapi, satu masalah besar telah timbul. Sebagai pekebun baru, mereka perlu meluangkan masa yang secukupnya untuk berkebun untuk memastikan tumbuhan mereka membesar dengan sihat kerana terdapat banyak faktor persekitaran yang mampu memberi kesan terhadap tumbesaran dan kesihatan tumbuhan mereka. Masa yang mereka perlukan telah dikekang dek kerana pekerjaan dan komitmen mereka. Oleh itu, projek 'Plant Whisperer: A Smart Indoor Gardening System' telah dicadangkan bersama beberapa alat sebagai solusinya. Melalui projek ini, satu sistem pemantauan tumbuhan akan direka untuk membantu mengekalkan kesihatan tumbuhan yang sedang membesar. Keadaan tumbuhan yang sihat juga akan dianalisi dan diuji. Beberapa sensor akan disambungkan pada sistem ini dimana sensorsensor tersebut akan menghantar isyarat input kepada mikropengawal manakala mikropengawal pula akan menghantar data kepada pengguna menerusi aplikasi dengan menggunakan konsep 'IOT'. Seterusnya, beberapa penggerak juga akan dibenamkan ke dalam projek ini dimana penggerak-penggerak tersebut akan diaktifkan mengikut keadaan sensor-sensor yang terbabit. Konklusinya, projek ini mampu membantu mengekalkan kesihatan dan tumbesaran sihat tumbuhan tersebut.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Indoor gardening is an activity where people grow plants but inside enclosed compounds. In this modernization time, many individuals have found indoor gardening as an interesting activity to be spent during their free time. But a big problem has come to existence. As a beginner gardener, they need to spend a good amount of time with their growing plant in order to make sure the plants grow healthily since there are many environmental factors that can affect the plant's health and growth. All the time they need have been limited by their working hours and commitments. As every cloud has a silver lining, the 'Plant Whisperer' project is proposed along with certain tools to provide the solution. Through this project, a plant monitoring system will be designed to help maintaining growing plant health. Then, by doing this project, plant's healthy condition will be analysed and tested. Several sensors are embedded to this system that will send input signals to the microcontroller that will send data to the user through an application by using the IOT concept. Then, several actuators also are embedded into this project, where they will be actuated according to their own sensors. In a nutshell, it is known that the 'Plant Whisperer' will help in maintaining the plant's health and growth.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

This dedication is sincerely meant for my beloved family, respected lecturers and dear friends. Their loves, affections, guides, helps and encouragements are the things that urge me to advance across the finishing line. There are no words that have the ability to represent my appreciation to these beautiful souls.

ACKNOWLEDGEMENT

First and foremost, all praise is for Allah the Almighty for granting me the chance to finish this Final Year Project report in the scheduled timeline. The sincerest gratification needs to be conveyed to my respected and wise supervisor, Puan Nurul Kausar Binti AB Majid. All of her recommendations, ideas and suggestions have been able to clear the obstacles and obstructions that have held me from finishing this project successfully. After that, my friends, specifically my course mates also deserved to receive my gratifications since they are the ones who save me from falling into the pit of failure by motivating me continuously. Apart from that, the apples of my eyes, the strength of my life, my family are also the one which I need to portray my appreciation to. They have always encouraged me to never give up and hustle for success. Last but not least, thanks to Universiti Teknikal Malaysia Melaka (UTeM) for this marvellous chance offered. There are no words that can fulfilled the task to portray gratifications to all of them.

اونيوم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

			PAGE
DEC	LARATION		iv
APP	ROVAL		v
ABS	TRAK		vi
ABS	TRACT		vii
DED	ICATION		viii
ACK	NOWLEDG	EMENT	ix
TAB	LE OF CON	TENTS	X
LIST	T OF TABLE	s	xiv
LIST	OF FIGUR		XV
LIST	OF APPEN	DICES	xviii
LIST	T OF SYMBC		xix
LIST	OF ABBRE	VIATIONS	XX
	UNI	/ERSITI TEKNIKAL MALAYSIA MELAKA	
СНА	PTER 1	INTRODUCTION	1
1.1	Background	1	1
1.2	Problem Sta	atement	3
1.3	Objective		3
1.4	Scope		3
1.5	Report Out	line	4
СНА	APTER 2	LITERATURE REVIEW	5
2.1	Indoor Gare	dening	5
2.2	Indoor Gard	dening Issues	5
		Х	

2.3	Factors Affecting Healthy Plant Growth	6
	2.3.1 Light	7
	2.3.2 Temperature	10
	2.3.3 Water or Soil Moisture	11
	2.3.4 Air Humidity	13
2.4	Past and Current Gardening Monitoring System	14
2.5	Summary	19
СНАР	TER 3 METHODOLOGY	20
3.1	Project Methodology	20
3.2	Development of Plant Monitoring System	22
	3.2.1 Coding Development of The System	22
	3.2.2 Hardware Developmeny of The System	24
	3.2.2.1 Microcontroller and Wi-Fi Module	25
	3.2.2.2 Light Intensity Sensor	27
	3.2.2.3 Temperature and Humidity Sensor	28
	3.2.2.4 Soil Moisture Sensor MALAYSIA MELAKA	29
	3.2.2.5 LED Grow Light	30
	3.2.2.6 Exhaust Fan	31
	3.2.2.7 Water Pump and Humidifier	31
	3.2.3 Software Used for System Develpment	33
	3.2.3.1 Proteus 8 Professional	33
	3.2.3.2 Arduino IDE	34
3.3	Development of Android Application	35
	3.3.1 Inkscape Software	35
	3.3.2 MIT App Inventor	36
	3.3.3 Firebase	37
3.4	Analysis Method	38

	3.4.1 Data Collecting	38
	3.4.2 Data Analysis	39
3.5	Summary	40
CUAT		41
СНАР	PTER 4 RESULT AND DISCUSSION	41
4.1	Introduction	41
4.2	Plant Monitoring System	42
	4.2.1 System	42
	4.2.2 Circuit	44
4.3	Android Application Software	45
4.4	Performance Analysis	48
	4.4.1 Digital Light Sensor Analysis	50
	4.4.2 Capacitive Soil Moisture Sensor Analysis	51
	4.4.3 Temperature and Humidity Sensor Analysis	53
4.5	اونيۇبرسىيتى تيكنىكل مليسيا مارىSummary	56
СНАР	TER 5 NIV CONCLUSION IKAL MALAYSIA MELAKA	57
5.1	Introduction	57
5.2	Research Summary	57
5.3	Objectives Achievement	57
5.4	Recommendation for Future Work	58
REFE	CRENCES	59
APPE	NDIX	61

xii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Comparison between Zig bee, Wifi and Bluetooth	17
Table 4.1:	Data From 7.30 to 10.30 PM	48
Table 4.2:	Data From 12.00 to 2.00 PM	49

LIST OF FIGURES

FIGURE	TITLE PA	GE
Figure 2.1:	Periodicity of plants	8
Figure 2.2:	Temperature response for maize and broccoli plants	11
Figure 2.3:	Photosynthesis chemical equation	12
Figure 2.4:	Stomata opening	14
Figure 2.5:	GSM based Agriculture monitoring system architecture	15
Figure 2.6:	Agriculture Environment Monitoring System using Android Wi-Fi	16
Figure 2.7:	Microcontroller Based Monitoring System for Agriculture	18
Figure 3.1:	Project Development Flowchart	20
Figure 3.2:	The Interface of Arduino IDE Software	23
Figure 3.3:	NIVERSITI TEKNIKAL MALAYSIA MELAKA Hardware Development Block Diagram	24
Figure 3.4:	NodeMCU V3 ESP8266 Board	26
Figure 3.5:	NodeMCU V3 ESP8266 Pinout	26
Figure 3.6:	BH1750 connection with NodeMCU Board	27
Figure 3.7:	DHT22 connection with NodeMCU Board	28
Figure 3.8:	Capacitive Soil Moisture Sensor connection with NodeMCU Board	29
Figure 3.9:	LED Grow Light	30
Figure 3.10:	Exhaust fan	31

Figure 3.11:	DC Water Pump	32
Figure 3.12:	Humidifier	32
Figure 3.13:	Proteus 8 Professional Software Interface	33
Figure 3.14:	Arduino IDE Interface	34
Figure 3.15:	Inkscape Software	35
Figure 3.16:	MIT App Inventor Design Tab	36
Figure 3.17:	MIT App Inventor Block Tab	37
Figure 3.18:	Firebase Database Interface	38
Figure 4.1:	Flowchart of the System Function	41
Figure 4.2:	The System Architecture	43
Figure 4.3:	The System Hardware	43
Figure 4.4:	Sensors With NodeMCU	44
Figure 4.5:	اونيومرسيني نيڪنيڪل مليهتي اولا	45
Figure 4.6: UN	Home Screen TEKNIKAL MALAYSIA MELAKA	46
Figure 4.7:	Reading Screen	47
Figure 4.8:	Configuration Screen	47
Figure 4.9:	Light Intensity Reading from 7.30 to 10.30 PM	50
Figure 4.10:	Light Intensity Reading from 12.00 to 2.00 PM	50
Figure 4.11:	Soil Moisture Reading from 7.30 to 10.30 PM	52
Figure 4.12:	Soil Moisture Reading from 12.00 to 2.00 PM	52
Figure 4.13:	Temperature Reading from 7.30 to 10.30 PM	53

Figure 4.14:	Temperature Reading from 12.00 to 2.00 PM	54
Figure 4.15:	Humidity Reading from 7.30 to 10.30 PM	55
Figure 4.16:	Humidity Reading from 12.00 to 2.00 PM	55

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	The red-light spectra effects on green vegetables	61
Appendix B	NodeMCU Board Specification	62
Appendix C	NodeMCU Coding	63
Appendix D	MIT App Inventor Blocks	68

LIST OF SYMBOLS

- v Volts
- A Ampere
- W Watt
- °C Degree Celsius

LIST OF ABBREVIATIONS

LED	Light Emitting Diode
ІоТ	Internet of Things
LDR	Light Dependant Resistor
DC	Direct Current
SOC	System on Chip
IDE	Integrated Development Environment
GSM	Global System for Mobile
SMS	Short Message Service
LCD	Liquid Crystal Display
MCU	Microcontroller Unit
Hex	Hexadecimal
ا ملالئےII	اوينوم سيتي تيڪني Integrated Circuit
I2CNIVER Inter-Integrated Circuit ALAYSIA MELAKA	

CHAPTER 1

INTRODUCTION

1.1 Background

Indoor gardening is basically growing a plant indoor. Specifically, indoor gardening can be said as an act of growing plant inside an enclosed place, most often a residential home. Many types of plants can be grown indoor such as herbs and decorative plants. Many residents of flats, apartments, condominiums have taken a liking on this type of gardening because the lack of garden spaces at their places.

Apparently, in this era of globalization, almost everyone has a job. This statement portrays that their time to garden will become shorter and shorter thus, jeopardizing their plant's health. In order to help with maintaining their plant's growth and health, 'Plant Whisperer: A smart indoor gardening system' has been proposed.

Specifically, a plant need water, light and warmth in order to grow healthily. Thus, parameters such as soil moisture, light intensity, temperature and humidity needed to be monitored meticulously.

Water or specifically soil moisture, is a very important aspect in plant's growth. This is because water is crucial for photosynthesis as it is a reagent in this process. It is also important for cell enlargement and growth. Then, it also acts as solvent for minerals. But, if the soil is overhydrated or underhydrated, the root will rot and cause the plant to grow poorly and eventually leading to death.

Plants make their own food through the photosynthesis process. Sunlight is the source of energy for this crucial process to happen. Thus, plant's growth can be affected by the quality, duration and intensity of light energy.

Temperature also plays an important role in helping plants growth. Firstly, it can affect the metabolic process of a plant. Too high temperature can damage the plant's cell while too low temperature can make the cells become dormant. This certainly will affect the plant's health.

In order to monitor the plant's health and growth effectively, several sensors such as light intensity sensor, temperature sensor, soil moisture sensor and air humidity sensor have been integrated into the 'Plant Whisperer'.

Monitoring alone is insufficient to maintaining the plant's health and growth effectively. Thus, several actuators such as water pump, exhaust fan, mister and artificial sunlight also have been integrated into the 'Plant Whisperer'.

The water pump will activate when the soil moisture is too low in order to maintain an enough water supply for the plant. Then, the exhaust fan is used whenever the temperature is too high for the plant to bring out all the hot wave. On the other hand, the mister will be turn on whenever there is a decrease in air humidity in order to provide good humidity for the plant. Finally, the artificial sunlight in connected to the light intensity sensor, so whenever there is insufficient supply of light energy, it will turn on.

Then, in order to applying the Internet of Things concept, the microcontroller of the 'Plant Whisperer' will process the raw data from the sensors and send it to the android application through the Wi-Fi module. The android application will nudge the user if dangerous level of certain parameter has been reached so that the user can take a countermeasure.

1.2 Problem Statement

Plants need water, light and warmth to maintain a good health and grow healthily. Water are needed since they are the solvent for minerals, reagent in photosynthesis process and important for cell enlargement and growth.

On the other hand, light is also a crucial element as it is the source of energy for the plant to make their own food through the photosynthesis process. Temperature can affect the plant's metabolic process. Too high will kill the cells and too low will make the cells dormant.

Thus, it is important to monitor all these parameters and act on it. But the gardeners nowadays may have only a little time to take care of their plants because of their commitment at workplaces. Thus, the 'Plant Whisperer' are proposed to help the gardeners to:

- 1. Monitor the Light intensity, temperature, soil moisture and air humidity.
- 2. Actuate some actuators according to the sensors.
- 3. Grow plant healthily

4. Maintaining the plant's health.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.3 Objective

There are three main aims for this project:

- 1. To develop a plant monitoring system to help maintaining growing plant health
- 2. To develop an application to monitor the plant's health or condition.
- 3. To analyze 'Plant Whisperer' performance.

1.4 Scope

The scope of this project is:

1. Using NodeMCU (ESP8266) as a microcontroller for the 'Plant Whisperer'.

2. Using an Android Application to monitor the system.

3. Using soil moisture sensor, temperature and humidity sensor and light intensity sensor.4. The processed data will be transmitted wirelessly from the microcontroller to the application.

5. This design is meant for indoor gardening only.

1.5 Report Outline

This project report includes five chapters. An overview of this project, 'Plant Whisperer: A smart indoor gardening system' has been enlighten in Chapter 1. Chapter 2 is a Literature review which portrays an overview of design and development of 'Plant Whisperer: A smart indoor gardening system'. Then, in Chapter 3, the methodology of this project is presented including the process to build its hardware and software. On the other hand, Chapter 4 is focused on the results of this project. Finally, in Chapter 5, the conclusions and recommendations for future work are displayed.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2

LITERATURE REVIEW

2.1 Indoor Gardening

Growing plant indoors is a technique called indoor gardening. It can be said that this technique can be used for decorative purposes. This is shown at shopping malls, trailing vines, restaurant, office buildings and even residential home. The reasons are to provide a sense of serenity and privacy and to improve indoor air quality that has long been proven affected by growing plants indoor. On the other hand, indoor gardening also can be defined specifically as an act of growing herbs or vegetable inside an enclosed compound such as residential home. Container gardening can be said as the simplest way of indoor gardening. Any type of container that have the ability to hold plant, soil and moisture are eligible. The most used technique is always potting using pot, but there are always individuals tend to recycle waste by using any medium such as used cans, egg cartons and so on as a container for their plants. Apart from that, the most important principle is the same as outdoor plants, indoor plants also need light, water and warmth in order to grow healthily (Maximum Yield Inc., 2019).

2.2 Indoor Gardening Issues

Recent article on indoor gardening issues (Saha, 2019) has shown that like common gardening, indoor gardening also has its own issues or problems. Firstly, the lack of sunlight. (Shipunov, 2018) states that every plant has it owns requirement of light in order to go