APPROVAL

I hereby approve have read this thesis submitted to the senate of UTeM and have accepted this thesis as partial fulfillment of the requirements for the degree in Bachelor of Mechanical Engineering (Design & innovation).

Signature

Supervisor

Mr. Faiz Redza B. Ramli

Date

13 MEI 2008

ENCIK FAIZ REDZA B. RAMLI

Pensyarah Fakulti Kejuruteraan Mekanixal Universiti Teknikal Malaysia Melaka Karung Berkunci 1200, Ayer Keroh 75450 Melaka

TEH TARIK MACHINE

YUVARAJAN S/O DORAIRAJ

This report is submitted in partial fulfillment of the requirement for the Bachelor of Mechanical Engineering (Design & Innovation)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

MEI 2008

DECRALATION

I hereby, declare this thesis entitled "TEH TARIK MACHINE"

is the results of my own research except as cited in the reference.

Signature	•	
Author's Name	:	YUVARAJAN A/L DORAIRAJ
Date	:	MEI 2008

ACKNOWLEDGEMENT

My deepest appreciation to Mr.Faiz Redza and Mr.Faizil Wasbari for their support and cooperation in allowing me to successfully complete my final year project. Their guidance has helped me to finish the first part of final year project and their advice is so resourceful, which make a great impact on preparing this report.

At this juncture, it is only logical for me to pay tribute to my family. Their undivided love and support are the beacons that have continued to motivate me through the harshest of situations and I believe it will also spur me on to greater achievement in the future.

Finally, I am also indebted to all those people who have directly or indirectly helped to make my final year project stint an incredible journey of knowledge and self improvement. These are the men and women who have left an indelible mark in their own significant way in my life. Their kind gestures and warm smiles will always have a very special place in my heart.

ABSTRACT

This project of designing and building a prototype of a teh tarik machine is divided in two parts. First part of the project is about proposal and the second part is about producing the prototype of the machine. This report fully describes about the combination of both part, which contains six chapters starting from introduction, literature review, methodology, results, discussion and conclusion respectively. The main objective of the project is to design and build a prototype of a machine. The conceptual design has been done through sketching by using free hand. After that, the design of the machine was being created by using software such as AutoCAD or CATIA. The process of manufacturing has been done after completing the assembly design in software. This machine has been done by using stainless steel for the body part. Meanwhile, there was also electrical circuit that has been inserted in the machine. This electrical circuit consist of heater element and blender function. The both of the part has been combined together and used to produce the "teh tarik" beverage.

ABSTRAK

Projek ini yang membabitkan proses merekabentukdan penghasilan prototaip mesin teh tarik terbahagi kepada dua bahagian. Bahagian pertama adalah mengenai pengenalan kepada projek tersebut dan bahagian kedua adalah mengenai penghasilan penghasilan produk tersebut dalam bentuk prototaip. Laporan ini secara kesuluruhan mempunyai 6 bahagian bermula dengan pengenalan, yang ilmiah,methodologi, keputusan, perbincangan dan akhirnya kesimpulan. Bahagian pengenalan menceritakan tentang objektif dan skop serta keputusan yang akan terhasil daripada projek ini. Objektif utama projek ini adalah untuk merekabentuk dan membina satu prototaip mesin teh tarik. Lukisan menggunakkan tangan akan dibuat pada peringkat awal untuk menyediakan asas rekabentuk produk tersebut.Projek ini akan menggunakan perisian seperti AutoCAD dan CATIA untuk proses merekabentuk. Proses pembuatan akan dimulakan selepas lukisan produk tersebut telah disiapkan menggunakan perisian komputer. Produk tersebut menggunakan bahan besi tahan karat untuk membuat badannya. Manakala, peralatan elektrik juga telah dimasukkan di dalam produk tersebut. Peralatan elektrik ini terdiri daripada 2 bahagian iaitu bahagian pemanas dan bahagian pengisar. Produk yang telah siap sepenuhnya boleh menghasilkan teh tarik seperti yang telah ditetapkan di objektif projek ini.

TABLE OF CONTENTS

CHAPTER	SUB	JECT	PAGE
	ACk	KNOWLEDGEMENTS	i
	ABS	TRACT	ii
	ABS	TRAK	iii
	TAB	BLE OF CONTENTS	iv
	LIST	Γ OF TABLES	ix
	LIST	T OF FIGURES	X
	LIST	Γ OF ABBREVIATION	xiv
	LIST	Γ OF APPENDICES	XV
CHAPTER I	INT	RODUCTION	
	1.1	Introduction	1
	1.2	Problem Statement	1
	1.3	Objective	2
	1.4	Scope	2
	1.5	Expected Result	3
CHAPTED H	I Im		
CHAPTER II	LIII	ERATURE REVIEW	
	2.1	Introduction	4
	2.2	Tea Description	4
		2.2.1 Tea Plantation	5
		2.2.2 Varieties of Tea	6
		2.2.3 Packaging Tea	7

9

		2.3.1 Brewing the tea (TEH TARIK)	10
		2.3.2 "Teh Tarik" Making Process	12
		2.3.3 The "Tarik" Process	13
		2.3.4 Coffee Maker (Product Architecture)	14
		2.3.5 Flow Chart of the machine	16
	2.4	Basic Electrical and Electronic Devices	17
		2.4.1 Electrical Circuits and Switches	17
		2.4.2 Introduction Direct Current (DC) Motor	18
	2.5	Basic machine design and fabrication	20
		2.5.1 Symbols for Use with SI	20
		2.5.2 Machines	23
	2.6	Material Selection	26
		2.6.1 Stainless Steel	26
	2.7 S	ummary of Literature Review	27
CHAPTER III	MET	THODOLOGY	
	3.1	Introduction	28
	3.2	Flow Chart	28
		3.2.1 Literature Review	29
		3.2.2 Design	29
		3.2.3 Manufacturing	31
		3.2.4 Testing	31
		3.2.5 Results/Discussion	31
		3.2.6 Conclusion	31
	3.3	Methodology Summary	32
CHAPTER IV	DES	IGN	
	4.1 Ir	ntroduction	33
	4.2 Q	uestioners	33

About "Teh Tarik"

2.3

37

	4.3 Conceptual Design	37
	4.3.1 Water Flow Selection	37
	4.3.2 Motor Placing Method	39
	4.3.3 Water Cap	40
	4.3.4 Tea Filter	41
	4.3.5 Concept Selection	43
	4.3.6 House of Quality	45
	4.3.7 Part Concept	46
	4.3.8 Sketching Design	47
	4.4 Part Design	48
	4.4.1 Water Tank	48
	4.4.2 Filter	49
	4.4.3 Filter Ring	50
	4.4.4 Filter Bar	51
	4.4.5 Hollow Bar	52
	4.4.6 Support Bar	53
	4.4.7 Motor Casing	54
	4.4.8 Condensed Milk Container	55
	4.4.9 Container Ring	56
	4.4.10 Container Bar	57
	4.5 Assembly Design	58
	4.5.1 Initial Design	58
	4.5.1 New Design	59
	4.6 Electrical Circuits	60
	4.6.1 Heater Element Circuit	60
	4.6.2 Complete Circuit	61
	4.7 Summary of Design	62
CHAPTER V	MANUFACTURING PROCESS	
	5.1 Introduction	63

63

	5.2.1 Ball Valve	64
	5.2.2 Blender	65
	5.2.3 Water Boiler	66
	5.2.4 Tea pot	67
	5.2.5 Thermocouple	68
	5.2.6 Plug	69
	5.2.7 Switch	70
	5.2.8 Earthing System	71
	5.2.9 Electric Connector	72
	5.2.10 Bill of Material	73
	5.2.11 Electrical Circuit	74
	5.3 Manufacturing Process	74
	5.3.1 Teapot Process	75
	5.3.2 Blender Blade Inserting Process	76
	5.3.3 Container Support System	77
	5.3.4 Hollow Bar	78
	5.3.5 Filter	79
	5.3.6 Water Tank	80
	5.3.7 Condensed Milk Container	81
	5.3.8 Motor Casing	82
	5.3.9 Screw for Mini Valve	83
	5.3.10 Screw and Mini Valve Position	84
	5.3.11 O-ring for Container	84
	5.3.12 Completed Product	86
	5.4 Summary of Manufacturing Process	87
CHAPTER VI	TESTING	
	6.1 Introduction of Testing	88
	6.2 Commissioning Testing	88

5.2 Machine Parts

	6.2.1 Teapot Testing	89
	6.2.2 Absorption Test	90
	6.2.3 Foam Test	91
	6.2.4 Taste Test	92
	6.3 Summary of Testing	93
CHAPTER VII	DISCUSSIONS	
	7.1 Introduction	94
	7.2 Design	94
	7.3 Problem	97
	7.4 Safety	98
	7.5 Summary of Discussion	99
CHAPTER VIII	CONCLUSION AND RECOMMENDATIONS	
	8.1 Conclusion	100
	8.2 Recommendations	101
REFERENCES		102
APPENDIXES		104

LIST OF TABLES

TABLES	TITLE	PAGE
Table 2.1	List of some common SI quantities	21
Table 4.1	Selection Criteria for Water Flow Concepts	38
Table 4.2	Selection Criteria for Motor Concepts	39
Table 4.3	Selection Criteria for Water Cap Concepts	40
Table 4.4	Selection Criteria for Filter Concepts	42
Table 5.1	Bill of Material	73
Table 6.1	Absorption Test	90

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Tea Plantation	5
Figure 2.2	Tea leaves	5
Figure 2.3	Tea Making	10
Figure 2.4	Condensed Milk	11
Figure 2.5	Filter Equipment	11
Figure 2.6	Filter Process	12
Figure 2.7	Adding Water	12
Figure 2.8	Adding Condensed Milk	13
Figure 2.9	Stirring Process	13
Figure 2.10	Pouring Process	13
Figure 2.11	Coffee Maker Product Architecture	14
Figure 2.12	Coffee Maker Structure System	15
Figure 2.13	Tea Maker	16
Figure 2.14	Conventional circuit diagrams	17
Figure 2.15	Single pole double throw (SPDT) switch	18
Figure 2.16	DC Motor	19
Figure 2.17	DC motor operating principles	20
Figure 2.18	Outside Calipers	22
Figure 2.19	Inside Calipers	22
Figure 2.20	Power Hacksaw Machine	23
Figure 2.21	Lathe Machine	24
Figure 2.22	Horizontal Milling Machine	25
Figure 2.23	Vertical Milling Machine	25

Figure 3.1	Flow Chart	28
Figure 4.1	Beverage Choice	34
Figure 4.2	"Teh Tarik" Preference	34
Figure 4.3	Preparation Time of "Teh Tarik"	35
Figure 4.4	Machine Portability Option	36
Figure 4.5	Machine Power Option	36
Figure 4.6	Water Flow Concepts	37
Figure 4.7	Motor Concepts	39
Figure 4.8	Water Cap Concepts	40
Figure 4.9	Filter Concepts	41
Figure 4.10	Concept Design 1	43
Figure 4.11	Concept Design 2	43
Figure 4.12	Concept Design 3	44
Figure 4.13	Concept Design 4	44
Figure 4.14	Concept Design 5	44
Figure 4.15	Concept Design 6	44
Figure 4.16	HOQ	45
Figure 4.17	Part Concepts	46
Figure 4.18	Final Concept Design	47
Figure 4.19	Water Tank Design	48
Figure 4.20	Filter Design	49
Figure 4.21	Filter Ring Design	50
Figure 4.22	Filter Bar Design	51
Figure 4.23	Hollow Bar Design	52
Figure 4.24	Support Bar Design	53
Figure 4.25	Motor Casing Design	54
Figure 4.26	Condensed Milk Container Design	55
Figure 4.27	Container Ring Design	56
Figure 4.28	Container Bar Design	57
Figure 4.29	Initial Design	58

Figure 4.30	Final Design	59
Figure 4.31	Heater Element Circuit	60
Figure 4.32	Complete Circuit	61
Figure 5.1	Ball Valve	64
Figure 5.2	Blender	65
Figure 5.3	Power train of a blender	66
Figure 5.4	Heater Element	66
Figure 5.5	Teapot	67
Figure 5.6	Thermocouple	68
Figure 5.7	Plug	69
Figure 5.8	Switches	70
Figure 5.9	Earthing Point	71
Figure 5.10	Electric Connector	72
Figure 5.11	Complete Electrical Circuit	74
Figure 5.12	Process of Teapot	75
Figure 5.13	Blade and Teapot	76
Figure 5.14	Silicon Sealant	76
Figure 5.15	White Tape	76
Figure 5.16	Completed Teapot	76
Figure 5.17	Container Frame	77
Figure 5.18	O-ring and Bar	77
Figure 5.19	Hollow Bar	78
Figure 5.20	Filter	79
Figure 5.21	Filter Process	79
Figure 5.22	Water Tank	80
Figure 5.23	Handle Bar	81
Figure 5.24	Container	81
Figure 5.25	Motor Casing Process	82
Figure 5.26	Lathe Machine Process	83
Figure 5.27	Screw Position	83

Figure 5.28	Screw and Mini Valve	84
Figure 5.29	O-Ring	84
Figure 5.30	O-Ring Welding	85
Figure 5.31	O-Ring Process	85
Figure 5.32	O-Ring Grinding	85
Figure 5.33	Side View	86
Figure 5.34	Front View	86
Figure 6.1	Testing Process	89
Figure 6.2	Tea Absorption	90
Figure 6.3	Foam Test	91
Figure 6.4	Taste test	92
Figure 6.5	Taste Option	92
Figure 7.1	Mini Valve	94
Figure 7.2	Container	95
Figure 7.3	Water Tank	96
Figure 7.4	Teapot Inserting	97
Figure 7.5	Wiring System	98
Figure 8.1	Recommended Design	101

LIST OF ABBREVIATION

ABBREVIATION DESCRIPTION

Universiti Teknikal Malaysia Melaka UTeM

PSM Projek Sarjana Muda

DC **Direct Current**

CATIA Computer Aided Three dimensional Interactive Application

LIST OF APPENDICES

APPENDIX TITLE

Appendix A: Gantt Chart Appendix B: Questioners Appendix C: Design Parts

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter covers about the problem statement that being faced by the makers and drinkers of "teh tarik". After that, objective of making this machine being explained and the scope of this project being covered. The scope will explain about the relation between the report and the machine that are focused in the making. The final part will be about the outcome of this project.

1.2 Problem Statement

The problem that been faced by the "teh tarik" makers and drinkers is that they usually have to go to the shop to taste the tea. In this case, the drinkers will choose their favorite shops or restaurant to have their drink. This could create some transportation problem on getting to the place. Beside that, there is also have some hygiene problem either by the makers or the shop environment. The drinkers faced with time management when some of them are morning tea drinkers. They have to rush to their job in the morning while having their drink prepared in the house by themselves. The beverage price are also getting higher each time the sugar or milk powder price getting high. The composition of the tea also plays a major part in making the tea. Some of the drinkers prefer strong taste of tea meanwhile others like light kind. Temperature also important when preparing the beverage.

1.3 Objective

The objectives of this project are to:

- Research about the tea making process manually and study them carefully.
- Compare the coffee maker machine with tea maker machine and identify the difference.
- Prepare a design through sketching and software designing process by doing conceptual and part design then assembling it.
- Identify the production process and the usage of machines in fabricating the prototype.
- Fabricate the prototype of the machine that can prepare tea beverage at a good composition and perfect temperature.

1.4 Scope

The main scope of this project is to generate ideas of the design to build the beverage machine. The design must be analyzed to create a machine that produce and prepare a good tea. Finally, a prototype must be build that is function able and is user friendly. Chapter 1 will cover about the introduction to the report. Meanwhile, chapter 2 will discuss about literature review. This chapter will cover about tea description, electronic and electric devices, production machines and material selection. Chapter 3 is about methodology that covers about the methods that will be used to prepare the prototype and all the process involved in the production. Where else, chapter 4 is about the design development that been done for the machine. Meanwhile, chapter 5 will cover the manufacturing process upon completing the machine and the problem that been faced in production. Chapter 6 will shows the testing that been done after completing the machine. These testing will be based on selected factors such as taste testing, temperature observation and others. The discussion part will be covered in Chapter 7. The discussion will be about defects of the machine and problems being faced upon completing this project. Finally chapter 8 will conclude about this report and the production of the prototype.

1.5 Expected Result

There will be research about tea making manually to gain the idea of the design for the prototype. The design process must include the design of the motor function, electronic circuit and the design of the body layout of the prototype. This design process is to guide the production process onto the output of the machining process. As for this project, the expectation is to develop a machine for preparing "teh tarik" beverage. This machine will be expected to be light and portable to be easily handled. It must also be easily cleaned and user friendly. This will prepare the beverage at a short time while ease the user to do other job while waiting for the beverage to be prepared. The composition of the tea and temperature must also be perfect for drinking with the foam created above the tea. The machine must be sold at a reasonable price so that it can be bought by all the "teh tarik" beverage lovers.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter explains about the tea description in detail and the making of the teh tarik manually. The electric and electronic device and machining process that will be used in the prototype production will be explained in detail. Finally there will be explanation about material selection that will be used for the body of the prototype.

2.2 Tea Description

Tea is a beverage made by steeping processed leaves, buds, or twigs of the tea bush in hot water for a few minutes. The processing can include oxidation, heating, drying, and the addition of other herbs, flowers, spices, and fruits.

The four basic types of true tea are (in order from most to least processed):

- black tea
- oolong tea
- green tea
- white tea

The term "herbal tea" usually refers to infusions of fruit or of herbs (such as rosehip, chamomile, or jiaogulan) that contain no Camellia sinensis (Alternative terms for

herbal tea that avoid the word "tea" are tisane and herbal infusion.) Tea is a natural source of the amino acid theanine, methylxanthines such as caffeine and the bromine, and polyphenolic antioxidant catechins. It has almost no carbohydrates, fat, or protein. It has a cooling, slightly bitter, and astringent flavor.

2.2.1 Tea Plantation

Figure 2.1 Tea Plantation

The Cameron highlands are a major tea production area in Malaysia. There are several tea labels that contribute in tea making in Malaysia such as Boh, Lipton and brands. Figure 2.2 are the example of fresh tea leaves in plantation.

Figure 2.2 Tea leaves

2.2.2 Varieties of Tea

a) Black Tea

Black tea is the most common form of tea in Southern Asia (Sri Lanka, India, Pakistan, Bangladesh, etc.) and in the last century many African countries including Kenya, Burundi, Rwanda, Malawi and Zimbabwe. The literal translation of the Chinese word is *red tea*, which is used by some tea lovers. The Chinese call it *red tea* because the actual tea liquid is red. Westerners call it *black tea* because the tea leaves used to brew it are usually black. The oxidation process will take between two weeks and one month. Black tea is further classified as either *orthodox* or as *CTC* (*Crush*, *Tear*, *Curl*, a production method developed about 1932). Unblended black teas are also identified by the estate they come from, their year and the flush (first, second or autumn).

b) Green Tea

Green tea is a "true" tea, meaning it is made solely with the leaves of Camellia sinensis, that has undergone minimal oxidation during processing. Green tea originates from China and has become associated with many cultures in Asia from Japan to the Middle East. Recently, it has become more widespread in the West, where black tea is traditionally consumed. Many varieties of green tea have been created in countries where it is grown that can differ substantially due to variable growing conditions, processing and harvesting time. Over the last few decades green tea has begun to be subjected to many scientific and medical studies to determine the extent of its long-purported health benefits, with some evidence suggesting regular green tea drinkers may have lower chances of heart disease and developing certain types of cancer

c) Oolong Tea

In Chinese, semi-oxidized teas are collectively grouped as blue tea, while the term "oolong" is used specifically as a name for certain semi-oxidized teas.