

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF HIGH SECURITY LOCKER SYSTEM FOR SAFETY PURPOSE USING ANDROID MOBILE APPLICATION

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours.

by

EDWIN RAJ A/L MOKAN B071610903 950409025115

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING **TECHNOLOGY**

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of high security locker system for safety purpose using android mobile application

Sesi Pengajian: 2019/2020

Saya **EDWIN RAJ A/L MOKAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- **Sila tandakan (X)

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
П	SULIT*	kepentingan M	alaysia seba	gaiman	a yang term	aktub dalam A	KTA
	SULIT	RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat 7	TERHA	D yang te	lah ditentukan	oleh
	TERMIND	organisasi/bada	an di mana p	enyelid	likan dijalaı	nkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang	Yang benar,		Disa	ıhkan o	leh penyelia	a:	
			•••••				
EDWI	IN RAJ A/L M	OKAN	SAL	ЕНА Е	BINTI MOH	HAMMAD SA	LEH
Alama	nt Tetap:		Cop	Cop Rasmi Penyelia			
NO.27	749,TAMAN S	SERAI WANGI,					
09400	PADANG SE	RAI,					
KEDA	AH.						
Tarikh	Tarikh: 12/12/2019			Tarikh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

iii

DECLARATION

I hereby, declared this report entitled Development of high security locker system for safety purpose using android mobile application is the results of my own research except as cited in references.

Signature:	
------------	--

Author: EDWIN RAJ A/L MOKAN

Date: 12/12/2019

iv

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours. The member of the supervisory is as follow:

Signature:	

Supervisor: SALEHA BINTI MOHAMMAD SALEH

ABSTRAK

Teknologi tanpa wayar kini menjadi isu utama dalam pembangunan gaya hidup yang selamat dan moden, terutama dalam penggunaan kawalan akses. Teknologi bluetooth, yang digunkan untuk berinteraksi rangkaian tanpa wayar dengan peranti lain yang membolehkan bluetooth dalam jarak jauh yang lebih pendek menggunakan isyarat tanpa wayar, memberikan pengguna lebih selesa untuk digunakan. Di samping itu, memegang banyak kunci adalah beban individu dan meningkatkan peluang kehilangan kunci. Projek ini bertujuan untuk mengatasi masalah ini dengan menyediakan kawalan akses yang selamat yang mampu dikawal tanpa dan wayar tanpa kunci untuk loker peribadi. Di samping itu, pengguna tidak perlu bimbang tentang keselamatan seperti perkara penting atau dokumen. Proses membuka kunci loker bermula apabila pengguna membuka aplikasi yang dimuat turun dari telefon Android. Selain itu, untuk mengunci loker, ia bergantung pada rangkaian bluetooth dan kata laluan yang telah ditetapkan. Oleh itu, aplikasi telah dimulakan, bluetooth akan cuba menyambung ke Arduino UNO melalui modul bluetooth dari telefon bimbit android. Sekiranya salah satu daripada spesifikasi sistem loker tidak diisi, hasil teks yang memberitahu kata laluan tidak betul akan muncul. Sebenarnya, apabila kata laluan yang salah telah ditekan sebanyak 3 kali, penggera telah diberi bunyi selama beberapa saat untuk memberi amaran kepada orang bahawa ada yang mencuba untuk memasuki loker. Ini untuk memastikan pengguna mempunyai sambungan untuk membuka kunci loker. Walaupun, analisis telah menentukan bahawa untuk memerhatikan kepekaan dalam menghantar isyarat dari telefon mudah alih Android ke modul Bluetooth di dua lokasi dalaman dan luaran yang berlainan. Sistem keselamatan fungsi perkakasan dan perisian dikawal sepenuhnya oleh mikropengawal UNO Arduino.

ABSTRACT

Wireless technologies are now a major issue in the development of a secure and modern lifestyle, particularly in the application of access control. Bluetooth technology, set up to interact wireless network with the other Bluetooth enabled devices in a shorter distance range using wireless signal, provides users with greater comfort and meaningful use. In addition, holding a lot of keys is a burden on the individual person and increases the chances of losing or breaking keys. This project is aimed to overcome this problem by providing a secure access control capable of wirelessly controlled without key for private lockers. Additionally, users do not need to worry about the safety of important things or documents. The locker unlocking process begins when the user opens the application downloaded from the Android mobiles. Furthermore, to unlocking or locking the locker it depends on range of Bluetooth and the password that has been set. Since the application has started, Bluetooth will attempt to connect to the Arduino UNO through Bluetooth module from the android mobile phone. In Arduino UNO, the Bluetooth module will receive the connection and enable the system. If one of the locker system specification not filled, text result that tells the password is incorrect will appear. In fact, once the incorrect password has been pressed 3 times, the alarm will be energized for a few seconds to alert people that someone is wrong to try to enter the Locker. This is to ensure that the user has a connection to unlock the locker. Although, an analysis has determine that to observe the delays in transmitting the signal from the Android mobile to the Bluetooth module at two different indoor and outdoor of the office locations and the performance of the system. The security system of hardware and software function is fully controlled by an Arduino UNO microcontroller.

DEDICATION

Specially dedicated to my beloved parents, family and friends, who strongly encouraged and supported me throughout my learning journey.

ACKNOWLEDGEMENTS

First of all, I would like to thanks and gratitude to god for his guidance and blessings to complete this Final Year Project with successfully. I would like to express my deepest gratitude to my advisor, Madam Saleha Binti Mohammad Saleh, for her excellent guidance, caring, patience, providing me suggestion, tips and encouragement throughout the completion of this Final Year Project.

Thanks to all my friends specially, those who are always willing to help and gives their best suggestions and encourage. Special thanks to my parents for their non-stop support and love. Last but not least, thank you to everyone who is involved in the completion of my Final Year Project, whether directly or indirectly. Your support, however small it is, it's very helpful and meaningful to me.

TABLE OF CONTENTS

			PAGE
TAB	SLE OF	CONTENTS	X
LIST	Γ OF TA	BLES	xiv
LIST	r of fic	GURES	XV
LIST	Γ OF AP	PENDICES	xviii
LIST	Γ OF AB	BREVIATIONS	xix
	DEED 4	TAYON O DAY COMA O A	
CHA	APTER 1	INTRODUCTION	1
1.1	Projec	t Background	1
1.2	Proble	em Statement	1
1.3	Projec	t Objective	2
1.4	Work	Scope	2
1.5	Summ	nary	4
CHA	APTER 2	LITERATURE REVIEW	5
2.1	Introd	uction	5
2.2	Theory	y	5
	2.2.1	Bleutooth	5
	i.	History of Bluetooth	5
	ii.	Bluetooth Classification	6
	iii.	Bluetooth Security	7
	iv.	The Structure of the Bluetooth Layers	8
	v.	Bluetooth Module (HC-06)	10

	2.2.2	Arduino	11
	2.2.3	Android	13
	2.2.4	Servo Motor	15
2.3	Journa	l Related	18
	2.3.1	Smart Locker Management System Using IoT	18
	2.3.2	A Review of Home Automation and Security Using Arduino,	
		Bluetooth and GSM Technology	20
	2.3.3	Smart Lock: A locking System Using Bluetooth Technology &	
		Camera Verification	23
	2.3.4	Development of GSM Based Advanced Alert Home Locker Safety	
		Security System Using Arduino UNO	25
	2.3.5	Android & Bluetooth Module Based Door Automation System	28
	2.3.6	Password Protected Home Automation System with Automatic	
		Door Lock	31
	2.3.7	Comparison of the Methods used by Previous Researches	33
2.4	Conclu	ision	36
СНАІ	PTER 3	METHODOLOGY	37
3.1	Introd	uction	37
3.2	Flow (Chart	38
	3.2.1	Process Explanation	39
	3.2.2	Problem Statement	39
	3.2.3	Literature Review	40
	3.2.4	Design an android mobile application system to Arduino with	

		Security password	41
	i.	Flow of the System	42
	ii.	Framework of the System	43
	iii.	Coding and function of Arduino IDE	44
	iv.	MIT App Inventor Description	45
	v.	Budge and Cost	48
	3.2.5	Develop the system via Bluetooth using Arduino UNO	
		Microcontroller	49
	3.2.6	Testing the prototype	56
	3.2.7	Compare and analyse the signal strength between Bluetooth	
		connections	56
3.3	Sumn	nary	57
CHA	PTER 4	RESULT & DISCUSSION	58
4.1	Introd	uction	58
4.2	Projec	et Development	58
	4.2.1	Hardware Development	59
	i.	Arduino UNO and Bluetooth Module	59
	ii.	Arduino UNO and Servo Motor	61
	iii.	Combination of All Components	63
4.3	Resul	t and Analysis	65
	4.3.1	Overall System Testing	65
	4.3.2	Security Test	67
	433	Experiment Setup	68

	4.3.4 Analysis for transmit and receive signal	70
	4.3.5 Test Performance of the System	74
	4.3.6 Bluetooth Connectivity Range	76
	4.3.7 Analysis of Strength of Bluetooth	77
4.4	Summary	78
CHAI	PTER 5 CONCLUSION & FUTURE RECOMMENDATION	79
5.1	Introduction	79
5.2	Conclusion	79
5.3	Future Recommendation	80
REFE	RENCES	81
APPE	NDIX	83

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Bluetooth Transmitter Power Classes	6
Table 2.2	Discription of the Bluetooth Layers	9
Table 2.3	Function of each System Block	29
Table 2.4	Comparison of methods used by previous research	34
Table 3.1	Coding and functions	45
Table 3.2	List of components that needed for this project	48
Table 3.3	Function of the individual block system	52
Table 4.1	Bluetooth Module HC-06 pin configuration	60
Table 4.2	Pin configuration between Arduino UNO and Servo Motor	62
Table 4.3	Connection of the components	63
Table 4.4	Data of distance (s) and delay (m) in the indoor	70
Table 4.5	Data of distance (s) and delay (m) in the outdoor	71
Table 4.6	Data collected based on the Performance of the System	75
Table 4.7	Bluetooth Connectivity Range	76
Table 4.8	Analysis of Strength of Bluetooth	77

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Type of Safety Lockers	3
Figure 2.1	Layers in a Bluetooth	8
Figure 2.2	Bluetooth Module (HC-06)	10
Figure 2.3	Arduino UNO Board	11
Figure 2.4	Arduino UNO out/Pin mapping	12
Figure 2.5	Android Logo	14
Figure 2.6	Android System Architecture	14
Figure 2.7	Variable Pulse Width Control Servo Position	15
Figure 2.8	Servo Motor	17
Figure 2.9	View of the inside Servo Motor	17
Figure 2.10	Functional Block Diagram of the Proposed System	19
Figure 2.11	System Architecture of the Smart Home System	21
Figure 2.12	Block Diagram of the Smart Home System	22
Figure 2.13	Project Overview	24
Figure 2.14	Circuit Diagram of Smart Locking System	25
Figure 2.15	Block Diagram of Advance Home Locker Security System	27
Figure 2.16	Advanced Alert Home Locker Security Diagram with Ardu	uino
	Uno Fingerprint and Soft Password	27
Figure 2.17	Implementation of Module	30

Figure 2.18	Block Diagram of the System	32
Figure 3.1	Entire Project Flowchart	38
Figure 3.2	Flow Chart of Literature Review	41
Figure 3.3	Flow of the system	42
Figure 3.4	Framework of the system	44
Figure 3.5	Block editor to create login and password	46
Figure 3.6	Block editor to control the Android application through Blueto	oth
		47
Figure 3.7	Flowchart of the system purpose	50
Figure 3.8	Block diagram of wireless locker using Bluetooth	51
Figure 3.9	View of Security Locker	53
Figure 3.10	Shown 2D sketch of Security Locker with appropriate	
	Dimension	53
Figure 3.11	Connection of components in the circuit	54
Figure 3.12	Overall board circuit of project	55
Figure 4.1	Security Locker	59
Figure 4.2	Bluetooth mobule to Arduino UNO connection	61
Figure 4.3	The complete hardware development	64
Figure 4.4	Security Locker prototype when Servo was locked	66
Figure 4.5	Security Locker prototype when Servo was unlocked	66
Figure 4.6	Interior view of the circuit	66
Figure 4.7	Android App in mobile	67
Figure 4.8	Security locker system setup at Indoor area	68
Figure 4.9	Security locker system for outdoor area	69

rigure 4.10	The line graph Delay (s) against Distance (iii) at Indoor	/ 1
Figure 4.11	The line graph Delay (s) against Distance (m) at Outdoor	72
Figure 4.12	The data for Indoor and Outdoor Analysis	73
Figure 4.13	PLX-DAQ Protocol method	74
Figure 4.14	The line graph locker status against counter	75
Figure 4.15	Graph of dBm versus distance (m)	78

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix 1	Gantt Chart		83

LIST OF ABBREVIATIONS

SIG Special Interest Group

UHF Ultra High Frequency

ISM Industrial Scientific and Medical

PC Personal Computer

VDC Voltage

RDX Research Department Explosive

PWM Pulse Width Modulation

USB Universal Serial Bus

ICSP In Circuit Serial Programming

AC Alternative Current

DC Direct Current

RPM Rotations Per Minute

LED Light Emitting Diode

Global System for Mobile communication

Light Dependent Resistor

PIR Passive Infrared Sensor

CPU Central Processing Unit

IOS Internetwork Operating System

IDE Integrated Development Environment

xix

ADT Android Development Tools

SDIC Spatial Data Interest Community

GND Ground

VCC Power

TX Transmitter

RX Receiver

TXD Transmit Data

RXD Receive Data

CHAPTER 1

INTRODUCTION

1.1 Project Background

This report discusses the "development of high security locker system for safety purpose using android mobile application" project. This project aims to design an android application and produce lockers that use the password based system and ensure the safety of the users. In addition, it will also facilitate users as well as avoid the occurrence of theft and loss cases. The objective and scope of this project is briefly described, how the project can be implemented. Android application will serve to empower the locker can be opened by entering a password. The user can control this application in the wake of entering the right password by utilizing just the Bluetooth association without WIFI. This project is one of the applications of Bluetooth innovation.

1.2 Problem Statement

Before this project was carried out a problem analysis was discussed and studied, among the problems faced by consumers. Therefore the loss of valuables in their lockers when abandoned as incomplete lockers with security features could be invaluable as the valuables in the lockers not safe. Previously users also needed to deal with locking lock problems they lost and this made them difficult to open their lockers and had to ask for help to open the lockers. With the project "development of high

security locker system for safety purpose using android mobile application" this can reduce the problem faced by consumers. Furthermore, the meaning of high as mentioned in title is determined that most of previous research are using password based keypad system while when compare with password based android mobile application it will be more privacy and secure. Using the latest technology, this project uses the smartphone Bluetooth that used the android operating system.

1.3 Project Objective

There are several objectives that will be achieved in this study

- To design an android mobile application that is able to access locker to be connected to Arduino with security password
- ii. To develop a high security locker system via Bluetooth using Arduino UNO Microcontroller
- iii. To test and analyze by comparing the signal strength between a model with Android mobile devices through Bluetooth connection.

1.4 Work Scope

The project developed is to help people to control their locker, arduino controller will be created by using android mobile application. It also provided password security system. Although, this project is split into two parts: development of hardware and software. Hardware device consisting of servo motor as a main component and the software is to design an android mobile application.

- 1) Arduino uno as a controller of the system.
- 2) Android mobile application systems as system security
- 3) Build a project that can be used in the office
- 4) Hardware of the locker will be controlled using the servo motor.
- 5) Using bluetooth module for transparent wireless serial connection setup between android mobile to lock the locker.
- 6) Bluetooth connection with android mobile device range about 10-100 meters depending on the Bluetooth device class.

Figure 1.1 Type of Safety Lockers

1.5 Summary

This study will produce new keyless security locker by using new technologies to the consumers. This will be very reliable to any private security lockers. This project will be a low cost, easy to build and reliability for controlling the security locker in certain distance. The project has two main scopes: software development and hardware development, which will be further clarified in the section on methodology.