

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PORTABLE 3-IN-1 EMERGENCY KITS

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours.

by

AMIN BIN AHMAT B071610947 951215-14-5199

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: PORTABLE 3-IN-1 EMERGENCY KITS

Sesi Pengajian: 2019

Saya AMIN BIN AHMAT mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

	TERHAD*	Mengandungi maklu	mat TERHAD yang telah ditentukan oleh	1	
		organisasi/badan di n	ana penyelidikan dijalankan.		
	TIDAK				
	TERHAD				
Yang benar,			Disahkan oleh penyelia:		
			PUAN SITI NUR SUHAILA BINTI		
AMIN BIN AHMAT		Г	MIRIN		
Alamat Tetap: A-9-7 MENARA ALPHA,					
SEKSYEN 2 WANGSA MAJU, 53300					
KUAI	KUALA LUMPUR, WILAYAH				
PERSEKUTUAN (KL)		KL)	Cop Rasmi Penyelia		

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled PORTABLE 3-IN-1 EMERGENCY KITS is the results of my own research except as cited in references.

Signature [.]	
Signature.	••••••

Author: AMIN BIN AHMAT

Date:

APPROVAL

This report is submitted to the Faculty Of Electrical And Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	PUAN SITI NUR SUHAILA BINTI MIRIN

ABSTRAK

Kenderaan menjadi sebuah pengangkutan yang utama dalam kehidupan seharian sama ada mahu ke tempat kerja atau ke mana-mana sahaja. Biasanya, masalah asas kereta adalah tayar pancit atau bateri kereta mati. Projek ini adalah untuk mencipta kit kecemasan 3 dalam 1, yang mempunyai jek kuasa, pemampat udara, dan bateri. Seterusnya, penyesuai 12 volt perlu disambungkan ke pengecas kereta dan dengan menggunakan aplikasi mudah alih yang dibuat menggunakan pencipta aplikasi MIT dengan mudah dapat menaikkan sebahagian daripada kereta dengan mengawal butang. Selain itu, sebagai pemampat udara, ia dapat menentukan tekanan sambil mengawal butang untuk meningkatkan dan menurunkan tahap tekanan udara dan boleh memantau pada aplikasi mudah alih. Oleh itu, projek ini boleh digunakan di mana saja dan pada bila-bila masa yang diperlukan.

ABSTRACT

The vehicle became the main transportation in daily life either going to work or any destinations. Usually, the basic problem of the car is a flat tire or having a dead battery. This project is to develop emergency kit 3 in 1, which has a power jack, air compressor, and battery. Next, adapter 12 volts need to connect to the car charger and by using mobile applications created using MIT apps inventor can easily jack up part of the car with control of the button. As the air compressor, it can determine the pressure while control a single button to increase and decrease the air pressure level and can be monitor at mobile applications. Therefore, this project can be use anywhere and anytime when needed the most.

DEDICATION

Special dedication to my beloved parents, Ahmat Bin Epi, Saadiah Binti Mohd Yusuf, Hanifah Binti Mat Som and Noraida Binti Yaacob. Their encouragement and guidance has always be an inspiration to me along this journey of education.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and Most Merciful. First of all, I thank to Allah for giving me strength, opportunity, and patience to complete this final year project report. I am using this opportunity to express my deepest gratitude and special thanks go out to my supervisor, Madam Siti Nur Suhaila Binti Mirin who in spite of being extraordinarily busy with her duties, took time to hear, guide and teach me during the final year session.

Next, I would like to dedicate my appreciation to my beloved parents especially Ahmat Bin Epi, Saadiah Binti Mohd Yusuf, Hanifah Binti Mat Som, Noraida Binti Yaacob, family and friends for their moral, financial and relentless support for me to get through this journey. I would also like to thank my entire course mate who always helps me and give moral support when I encountered the problem and always ready to give their help without hesitation. I am very appreciated for everything and who does understand me as long completing this report.

Last but not least, I greatly appreciated the assistance and cooperation from the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka for providing good equipment and information needed. Allah is the All-Knowing. Thank you very much for the wonderful hands.

TABLE OF CONTENTS

			PAGE
TAB	LE OF CON	TENTS	X
LIST	OF TABLE	ES	xiv
LIST	OF FIGUR	ES	XV
LIST	OF APPEN	DICES	xviii
LIST	OF SYMB	OLS	xix
LIST	OF ABBRI	EVIATIONS	XX
LIST	OF PUBLI	CATIONS	xxi
сна	ртгр 1	INTRODUCTION	22
UIIA		INTRODUCTION	22
1.1	Introductio	on of project	22
1.2	Problem S	tatement	23
1.3	Objective		23
1.4	Scope of P	roject	23
1.5	Thesis Lay	vout	24
СНА	PTER 2	LITERATURE REVIEWS	26
2.1	Introductio	on	26
2.2	Emergency	y Kits	26
2.3	Power Jacl	K	28

Х

2.4	DC M	otor	29
	2.4.1	Brushed Motor	30
	2.4.2	Power window	31
	2.4.3	Stepper Motor	32
	2.4.4	Servo Motor	32
2.5	Comp	arison between DC Motor	33
2.6	Air Co	ompressor	34
	2.6.1	Rotary Air Compressor	35
2.7	Batter	y	36
	2.7.1	Vehicle Battery	36
	2.7.2	Lithium Ion Battery	38
	2.7.3	Nickel-Cadmium Battery	38
	2.7.4	Lithium-Ion (LI) or Lithium Polymer (LP) Battery	39
2.8	Comp	arison between Wet Cell and Dry Cell	39
CILAI	PTER 3	METHODOLOGY	41
UNAI	TERJ	MIE I HODOLOG I	41
3.1	Introd	uction	41
3.2	Opera	tion of the Project	41
3.3	Projec	t Requirement	42
	3.3.1	Software Implementation	42
	3.3.1.1	Design using SolidWork	42

xi

	3.3.1.2 Design Circuit using Proteus	44
	3.3.1.3 Design Applications using MIT App Inventor and Arduino	45
	3.3.2 Hardware Implementation	46
	3.3.2.1 DC Motor	46
	3.3.2.2 Air Compressor	47
	3.3.2.3 Battery Lithium Ion	47
	3.3.2.4 Arduino Mega 2560	47
	3.3.2.5 Bluetooth Module	47
	3.3.2.6 Pressure Sensor	48
	3.3.2.7 Relay	48
3.4	Project Testing	49
3.5	Project Analysis	49
CHAI	PTER 4 RESULTS AND DISCUSSION	50
4.1	Introduction	50
4.2	Results for Air Pressure tested using Portable 3-in-1 Emergency Kits	50
	4.2.1 Results for Air Pressure tested using Pressure Pump at Petronas	
	MITC	52
	4.2.2 Results for Air Pressure tested using Pressure Pump at Shell Ayer	
	Keroh	54
	4.2.3 Results for Air Pressure tested using Pressure Pump at Petron Ayer xii	

		Keroh	56
	4.2.4	Comparison Results	58
	4.2.4.1	Results for Time (s) of Air Pressure 180 Kpa Tested to 220 Kpa using	
		Portable 3-in-1 Emergency Kits and Pressure Pump at Petron Ayer	
		Keroh	58
	4.2.4.2	Results for Time (s) of Air Pressure 180 Kpa Tested to 230 Kpa using	
		Portable 3-in-1 Emergency Kits and Pressure Pump at Petron Ayer	
		Keroh	59
	4.2.4.3	Results for Time (s) of Air Pressure 180 Kpa Tested to 240 Kpa using	
		Portable 3-in-1 Emergency Kits and Pressure Pump at Petron Ayer	
		Keroh	60
	4.2.4.4	Results for Time (s) of Air Pressure 180 Kpa Tested to 250 Kpa using	
		Portable 3-in-1 Emergency Kits and Pressure Pump at Petron Ayer	
		Keroh	61
4.3	Result	for Electric Power Jack tested using Portable 3-in-1 Emergency kits	62
4.4	Result	s for Battery Jumper tested using Portable 3-in-1 Emergency Kits	65
	TED 5	CONCLUSION AND EUTIDE WODZS	
СНАР	PTER 5	CONCLUSION AND FUTURE WORKS	66
REFE	RENC	ES	68
APPE	NDIX		70

xiii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: The comparison of	DC motor	33
Table 2.2: Comparisons betw	een dry cell and wet cell batteries	39
Table 4.1: Air Pressure Meas	urements Data using Pressure Pump at Petronas MI	TC 53
Table 4.2: Air Pressure Meas	urements Data using Pressure Pump at Shell Ayer H	Keroh 55
Table 4.3: Air Pressure Meas	urements Data using Pressure Pump at Petron Ayer	Keroh57

xiv

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Design	of the flag	27
Figure 2.2: Places	that the flag is put	27
Figure 2.3: The inv	vention of flag	28
Figure 2.4: The pla	aced of invention	28
Figure 2.5: Jackscr	rew	29
Figure 2.6: Type o	of motor	30
Figure 2.7: Power	window	31
Figure 2.8: Applic	ation of stepper motor	32
Figure 2.9: Applic	ation of servo motor	33
Figure 2.10: Type	of compressor	34
Figure 2.11: Opera	ation of rolling air compressor	35
Figure 2.12: Rollin	ng air compressor inflates vehicle tires	36
Figure 2.13: Vehic	ele battery	37
Figure 2.14: Lithiu	um ion battery	38
Figure 2.15: Nicke	el-Cadmium (Ni-Cad) Battery	39
Figure 2.16: Lithiu	um-Ion (LI) or Lithium-Polymer (LP) Battery	39

Figure 3.1: Flow chart of portable 3-in-1 emergency kits	42
Figure 3.2: Power windows	43
Figure 3.3: Air compressors	43
Figure 3.4: Battery	43
Figure 3.5: Combination of entire parts	44
Figure 3.6: Circuit for roject using Proteus software	45
Figure 3.7: Project Prototype	45
Figure 3.8: Design of the nut	46
Figure 3.9: Pressure sensor	48
Figure 4.1: Smartphone Application	51
Figure 4.2: Tested air pressure control using Apps	52
Figure 4.3: Graph shows Time (s) of Air Pressure 180 Kpa Tested from 220 Kpa to 25	50
Kpa versus Number of Taken using Portable 3-in-1 Emergency Kits	52
Figure 4.4: Analog Pump Pressure at Petronas MITC	53
Figure 4.5: Graph shows Time (s) of Air Pressure 180 Kpa Tested from 220 Kpa to 25	50
Kpa versus Number of Taken using Pressure Pump at Petronas MITC	54
Figure 4.6: Digital Pump Pressure at Shell Ayer Keroh	55
Figure 4.7: Graph shows Time (s) of Air Pressure 180 Kpa Tested from 220 Kpa to 25	50
Kpa versus Number of Taken using Pressure Pump at Shell Ayer Keroh	56
Figure 4.8: Digital Pump Pressure at Petron Ayer Keroh	57
Figure 4.9: Graph shows Time (s) of Air Pressure 180 Kpa Tested from 220 Kpa to 25	50
Kpa versus Number of Taken using Pressure Pump at Petron Ayer Keroh	58

Figure 4.10: Graph shows Time (s) of Air Pressure 180 Kpa Tested to 220 Kpa using	
Portable 3-in-1 Emergency Kits versus using Pressure Pump at Petron Ayer Keroh	59
Figure 4.11: Graph shows Time (s) of Air Pressure 180 Kpa Tested to 230 Kpa using	
Portable 3-in-1 Emergency Kits versus using Pressure Pump at Petron Ayer Keroh	60
Figure 4.12: Graph shows Time (s) of Air Pressure 180 Kpa Tested to 240 Kpa using	
Portable 3-in-1 Emergency Kits versus using Pressure Pump at Petron Ayer Keroh	61
Figure 4.13: Graph shows Time (s) of Air Pressure 180 Kpa Tested to 250 Kpa using	
Portable 3-in-1 Emergency Kits versus using Pressure Pump at Petron Ayer Keroh	62
Figure 4.14: Power jack on vehicle type Axia	63
Figure 4.15: Graph shows Time (s) of Electric Power Jack for Vehicles type Myvi and	
Axia Tested Down-lifted by 2cm versus Number of Taken	64
Figure 4.16: Graph shows Time (s) of Electric Power Jack for Vehicles type Myvi and	
Axia Tested Up-lifted by 2cm versus Number of Taken	64
Figure 4.17: Battery jumper on vehicle type Axia	65

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A: Air Pressure Mea	surements Data using Portable 3-in-1	70
Emergency Kits		
Appendix B: Power Jack Meas	surements Data using Portable 3-in-1	77
Emergency Kits		

xviii

LIST OF SYMBOLS

xix

LIST OF ABBREVIATIONS

XX

LIST OF PUBLICATIONS

xxi

CHAPTER 1

INTRODUCTION

1.1 Introduction of project

In this modern era, vehicles functions as a very important roles to facilitate us. In spite of modern transportations technology, usually equipment tools for troubleshooting vehicles still using non-advance tools to change a flat tires and jump a dead battery for a quick jumpstart. So, to enhance the problems in troubleshooting vehicles, Portable 3-in-1 emergency kits is design as prototype for this project, which include power window to jack a car, battery jumper to start up a dead battery and air compressor which can inflate tires. Basically, the design of scissor jack that has same function tools which is used of mechanical energy or human energy to lift up parts of car give complexity to user especially for uneducated user for car troubleshooting equipment [1].

Furthermore, when flat tires suddenly occurs, air supply is limited to access and only available at pump station or car workshop that have an air supply[2]. As for the dead battery car, it required car jumper cable and another vehicle to start up the car.

This chapter introduces the subject matter and problems being studied, and indicates its importance and validity. Introduction is the first part of a thesis and allows the readers to get the general idea of what your thesis is about. It also acquaints the readers with the thesis topic, explaining the basic points of the research and pointing the direction of your research. Introduction sets out the hypotheses to be tested (if applicable) and research objectives to be attained. It is important to remember that the research objectives stated in the thesis should match the findings of the study. Failing to do so could result a recommendation by the examiners to conduct additional studies so that the stated objectives are met.

1.2 Problem Statement

Despite the development of advance technology in vehicles manufacturing, society should alert in solving some basic problems to troubleshoot their own vehicles even without mechanics but require user have some skills and tools experiences or follow the guidance that usually given such as changes flat tires and start up a dead battery car. As a flat tire, air supply is required but there only have a limited access when outside the city or in the middle of highway and as a dead battery also required another vehicle to jump a dead battery.

1.3 Objective

The objective of this project is:

- To develop a portable emergency kits with electric power jack, battery, and air compressor.
- 2) To design a compact size and light weight emergency kits.
- 3) To analyze time performance emergency kits.

1.4 Scope of Project

The scope of this project is designing prototype of portable 3-in-1 emergency kits. As needed to change tires, power window is used to lifting up the normal jack. As

the screw nut is manual open then the jack can be lift or down by using button or mobile app and if the spare tires did not have enough air, then air compressor will inflate tires by using 12-volt adapter and can be remotely control using apps with Bluethoot. Some cases occur, the car battery will end it life but with a new design of battery car, it will have a great advantage to start up a car.

Hence, the problem statement that resulting to the outcome of project's idea is:

- i. Design compact design for portable 3-in-1 emergency kits.
- Design the prototype using Solidwork software with dimension of 37cm
 x 24cm x24cm.
- iii. Minimize the human work for lifting a portion of a car using electrical power jack.
- iv. Design the prototype that can only used for sedan car with 2000 cc and below.
- v. Design an electrical power jack for vehicle with scissor jack only.
- vi. Design an air compressor with pressure of 300 psi and below.

1.5 Thesis Layout

This thesis consists of five chapters. Chapter 1 is about the project overview which is objectives of project, problem statement, scopes of project, methodology and report outlines. This chapter will briefly discussed which purposely to provide the reader an understanding of the project introduction.

Chapter 2 will discuss more on literature review on current approach and method in designing portable 3-in-1 emergency kits. This section also contains the limitations of