

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

VOICE RECOGNITION WIRELESS HOME AUTOMATION & SENSOR MONITORING SYSTEM BASED ON BLUETOOTH

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours.

by

CHONG WEI NIN B071610466 960428-04-5292

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: VOICE RECOGNITION WIRELESS HOME AUTOMATION & SENSOR MONITORING SYSTEM BASED ON BLUETOOTH

Sesi Pengajian: 2019

Saya CHONG WEI NIN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan

Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
	CI II 177*	kepentingan M	alaysia seba	gaiman	a yang term	aktub dalam A	KTA
	SULI1*	RAHSIA RAS	MI 1972.				
		Mengandungi	maklumat 7	ſERHA	D yang te	lah ditentukan	oleh
	TERHAD*	organisasi/bada	an di mana p	enyelic	likan dijalaı	nkan.	
	TIDAK						
	TERHAD						
Yang	benar,		Disa	ıhkan o	leh penyelia	a:	
CHONG WEI NIN TS. MADIHA BINTI ZAHARI							
Alam	at Tetap:		Сор	Rasmi	Penyelia		
LOT	1673						
KAM	PUNG KONG	SAI					
AYER MERBAU							
77200 BEMBAN							
MEL	AKA						

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled VOICE RECOGNITION WIRELESS HOME AUTOMATION & SENSOR MONITORING SYSTEM BASED ON BLUETOOTH is the results of my own research except as cited in references.

Signature:

Author: CHONG WEI NIN

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Industrial Automation & Robotics) with Honours. The member of the supervisory is as follow:

Signature:

Co-supervisor: DR. MOHD BADRIL BIN NOR SHAH

ABSTRAK

Sistem Automasi Rumah (SAR) adalah salah satu teknologi terkenal dengan menyediakan pelbagai ciri kawalan pada masa kini. Diikuti dengan kebangkitan teknologi, aplikasi rumah menjadi lebih fungsionalistik dan manusia dapat menikmati kehidupan yang selesa dan berteknologi tinggi dengan hanya memberikan arahan suara untuk mengawal semua peralatan elektrik rumah. Tujuan membuat projek ini adalah untuk membangunkan automasi rumah yang mudah dikawal, kos murah dan mesra pengguna. Mikrokontroler Arduino Mega digunakan dalam projek ini sebagai medium untuk melaksanakan tugas. Ia juga bertindak sebagai pemproses kerana ia terdiri daripada ingatan dan kebolehan dalam decode dan melaksanakan arahan. Modul Bluetooth HC05 digunakan untuk menerima dan menghantar isyarat dari Android App Bluetooth telefon pintar manakala telefon pintar Android digunakan oleh pengguna untuk memberikan arahan suara. Modul Bluetooth digunakan sebagai peranti komunikasi di antara telefon pintar Android dan Arduino Mega untuk mengawal peralatan elektrik. Aplikasi Bluetooth perlu dilatih terlebih dahulu supaya ia dapat menyimpan suara atau aksen pengguna. Perintah suara yang diterima oleh Bluetooth App kemudiannya akan mengenali suara pengguna. Setelah pengiktirafan suara, mikrokontroler akan mengendalikan relay sama ada ON atau OFF dan notis pemberitahuan akan dihantar melalui SMS kepada pengguna apabila terdapat asap atau kebocoran gas yang dikesan. Lebih-lebih lagi, rak pakaian akan secara automatik gerak balik apabila terdapat titisan hujan dikesan oleh pengesan hujan. Dengan menyediakan sistem ini, pengguna tidak perlu berjalan-jalan ke bahagian dinding rumah yang berbeza untuk menyalakan lampu dan sebagainya. Paling penting dari semua, pengguna boleh mengelakkan atau mengurangkan peratusan kerosakan aplikasi rumah mereka. Oleh itu, kehidupan pengguna menjadi lebih mudah dan lebih cekap. Menjelang akhir projek ini, pengiktirafan suara automasi rumah tanpa wayar dan sistem pemantauan sensor berdasarkan Bluetooth telah berjaya dibangunkan.

ABSTRACT

Home Automation System (HAS) is one of the famous technologies with providing various control feature nowadays. Followed to the rise of technology, houses application became more functionalization and human were able to enjoy a comfortable and high-tech life with only giving a voice command to controls all the home electrical appliances. The purpose of making this project is to develop a simple, low-cost and userfriendly home automation. Arduino Mega microcontroller is used in this project as a medium to perform a task. It also acts as a processor because it consists of memory and ability in decode and execute a command. Bluetooth module HC05 is used for receiving and transmitting signal from Bluetooth App of Android smartphone while the Android smartphone is used by user for giving a voice command. Bluetooth module is used as a communication device in between Android smartphone and Arduino Mega to control the electrical appliances. The Bluetooth App needs to be train at a very first so that it able to store up user's voice or accent. The voice command received by the Bluetooth App will then recognize user's voice. Once the voice match, microcontroller will operate the relay either ON or OFF and the alert notification will be sent via SMS to the user when there is smoke or gas leakage detected. Moreover, clothes rack will automatically take back when there is raindrop sense by the raindrops detector. By providing this system, user will not need to walk around to switching lamp and more. Most important of all, user can avoid or reduce the percentage of damage of their home application. Therefore, user's life being easier and more efficient. By the end of this project, voice recognition wireless home automation and sensor monitoring system based on Bluetooth was successfully developed.

DEDICATION

To my beloved parents, I acknowledge my sincere indebtedness and gratitude to them for their love, dream and sacrifice throughout my life. Their sacrifice had inspired me from the day I learned how to read and write until what I have become now. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to achieve my dreams.

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor, TS. Madiha Binti Zahari who gave me the golden opportunity, encouragement, guidance, and advice to do this project on the topic of voice recognition wireless home automation & sensor monitoring system based on Bluetooth. Besides that, she also helps me in doing a lot of research and I came to know about many new things. This project report might be impossible to complete without her help. Last but not least, thank you to everyone those directly and indirectly involved in helping me finishing this Final Year Project report. Thank you very much.

TABLE OF CONTENTS

		PA	GE		
Г	TABLE OF CO	NTENTS	Х		
Ι	LIST OF TABLES				
Ι	LIST OF FIGURES xx				
Ι	LIST OF APPE	NDICES	cviii		
Ι	LIST OF ABBF	EVIATIONS, SYMBOLS AND NOMENCLATURE	XX		
CHAP	TER 1 INT	RODUCTION	1		
1.0	Iı	ntroduction	1		
1.1	Р	roject Background	2		
1.2	Р	roblem Statement	3		
1.3	C	bjective	3		
1.4	S	cope of Work	4		
1.5	C	rganization	4		
СНАР	TER 2 LITI	ERATURE REVIEW	5		
2.0	C	verview	5		
2.1	H	ome Automation System (HAS)	5		
	2.1.1	Smart Home using Android	6		
	2.1.1.1	Input Base on Switching of Toggle Button by Bluetooth App	7		
	2.1.1.2	Bluetooth Communication	8		
	2.1.1.3	Controlled Method: Android Smartphone	8		
	2.1.1.4	Outcome: Manage Electrical Home Appliances by Switching			
		Toggle Button from Android Smartphone App.	9		
	2.1.1.5	Future Improvement: Using voice, button, eyes, gestures to cont	rol		
		home appliances and adding sensor such as temperature, smoke	·,		
		PIR, IR, etc.	10		
2	2.1.2 I	oT Based Smart Security and Home Automation System	10		

	2.1.2.1	Input Base on Detection of Human by PIR Motion Sensor	11
	2.1.2.2	Internet/ Wi-Fi Communication	12
	2.1.2.3	Controlled Method: Android/ iOS smartphone	13
	2.1.2.4	Outcome: Press digit to Control Alarm and Any Electrical Hom	ıe
		Appliances.	13
	2.1.2.5	Future Improvement: Add camera, sending message to police	
		department and able to control home without receive voice call	
		first	14
2.1.3	Desig	n and Implementation of Security Systems for Smart Home based	l on
	GSM	technology	14
	2.1.3.1	Input Base on Detection of Human Sense by Web Camera	15
	2.1.3.2	GSM/ GPRS module	18
	2.1.3.3	Controlled Method: Atmega644p microcontroller	18
	2.1.3.4	Outcome: Alert Notification Sent to User through Short Messa	ige
		System (SMS)	19
	2.1.3.5	Future Improvement: Fix Web Camera Beside the Door and Ac	ld
		More Sensor	19
2.1.4	Zigbe	e Based Voice Control System for Smart Home	20
	2.1.4.1	Input Based on Speech Recognition	20
	2.1.4.2	Zigbee RF Communication	21
	2.1.4.3	Controlled Method: Microsoft Speech API	21
	2.1.4.4	Outcome: Using Speech Command to Switching Electrical	
		Appliances	22
	2.1.4.5	Future improvement: Insert Ascertain Instruct, Improve Control	ol
		Manner and Communication Device	23

2.1.5	2.1.5 A Voice Controlled Multi-Functional Smart Home Automation Sys		tem 24
2.1.5.1		Input Based on Voice Recognition	25
	2.1.5.2	Voice Recognition Module V3	26
	2.1.5.3	Controlled Method: Microphone Transmit Voice to Arduino	UNO
		Microcontroller	26
	2.1.5.4	Outcome: Voice control all electrical home appliances	27
	2.1.5.5	Future Improvement: Apply Proximity and Ambient Light S	ensor
		Combine with InfraRed Thermometer, Automatic Alarm, M	otion
		Detector, Talk and Sense the Mood of Owner	28
2.1.6	Overal	ll view according to 5 research journals	29
2.2	Voice	Characteristics	31
2.2.1	Voice	Recognition Overview	31
2.3	Compa	arison between Arduino UNO R3 and Arduino Mega 2560	31
2.4	Differe	ent between Stepper Motor and Servo Motor	33
2.5	Types	of Sensor	35
2.5.1	Tempe	erature Sensor	35
2.5.2	Gas Se	ensor	36
2.5.3	Raindi	rop Sensor	37
2.6	Functi	onality of Various Communication Module	38
2.7	Conclu	usion	40
CHAPTER	3 MET	HODOLOGY	41
3.0	Introd	uction	41
3.1	Systen	n Architecture Diagram	41
3.2	Operat	tion Flow	42
3.2.1	Voice	Recognition Home Automation using Bluetooth	43
3.2.2	Autom	nated Clothes Rack	44
3.2.3	Sensor	Monitoring System and Alert Notification by GSM Module	45
3.3	Hardw	vare Development	46
3.3.1	Arduir	no MEGA 2560	46
3.3.2	Arduir	no HC05 Wireless Bluetooth Serial Module Communication	47

xii

3.3.3	Arduino IoT 4 Channel Ways Opto-Isolator IC 817C Relay Module	48
3.3.4	Stepper Motor 28YBJ-48 + ULN2003 Driver	49
3.3.5	MQ-2 Gas Sensor	50
3.3.6	Buzzer	51
3.3.7	Arduino I2C LCD 2004 Liquid Crystal Display	51
3.3.8	SIM900A GSM/ GPRS module	52
3.3.9	A39 Snow Raindrops detection Sensor Rain Weather Humidity Modu	ile 53
3.3.10	Temperature sensor	54
3.3.11	Light Dependent Resistor (LDR)	54
3.4	Software	55
3.4.1	Arduino IDE	55
3.4.2	Arduino Bluetooth Controller Application	56
3.5	System Development	60
3.5.1	Voice Control Electrical Home Appliances using Bluetooth Application	on 55
3.5.2	Sending Alert Notification using SIM900A GSM Module	55
3.5.3	Monitoring System and Automated clothes horse system	55
3.6	System Work Schematic Diagram	55
3.7	Conclusion	6 0
CHAPTER 4	RESULT AND DISCUSSION	61
4.0	Introduction	61
4.1	Prototype Project Model	61
4.2	Result	62
4.2.1	Arduino Bluetooth Controller Application	62
4.2.2	Short Message Service (SMS)	63
4.2.3	Automated Clothes Horse	64
4.3	Analysis	66
4.3.1	Signal strength of Bluetooth	66
4.3.2	Performance of Arduino Bluetooth Application toward each gender, ra	ace
	and age against average number of attempts according to distance bet	ween
	voice command and controller.	70
4.3.3	Performance of MQ-2 sensor towards Butane gas	72
4.3.4		74
	Performance of Automatd Clothes Horse	
4.4	Discussion	75

CHAPTER 5	CHAPTER 5 CONCLUSION AND FUTURE WORK	
5.0	Introduction	76
5.1	Summary	76
5.2	Achievement	77
5.3	Limitation	78
5.4	Future work	79
REFERENCES		80
APPENDICES		81

LIST OF TABLES

TABLE	TITLE P.	AGE
Table2.1:	Overall result for each group of voice commands	28
Table2.2:	Comparison between five current prototype projects	30
Table2.3:	Comparison between Arduino UNO R3 and Arduino Mega 2560	32
Table2.4(a):	Different between Stepper Motor and Servo Motor	33
Table 2.4(b):	Different between Bipolar Stepper and Unipolar Stepper	34
Table 2.5:	Compare between Temperature Sensor LM35 and TMP36	35
Table 2.6:	Compare between Gas Sensor MQ2 and MQ5	36
Table 2.7:	Different between A39 Snow Raindrops Detector and DHT11 Humidity and Temperature Sensor	37
Table 2.8:	Functionality of Various Communication Module	39
Table 3.1:	Features for Arduino Mega 2560	47
Table 3.2:	Features of Stepper Motor	49
Table 3.3:	Specification of MQ-2 Gas Sensor	50
Table 3.4:	A39 Characteristics of Snow Raindrops detection Sensor Rain Weather Humidity Module	53
Table 3.5:	Characteristics of Temperature Sensor LM35	54
Table 4.1:	Signal strength of Bluetooth according to the distance	67
Table 4.2:	Reachability between voice command and controller	71
Table 4.3:	Concentration of Butane gas varied to time	73

LIST OF FIGURES

FIGURE	TITLE	PAGE
igure 2.1:	Overall Process of Smart Home Control	6
igure 2.2:	Flow Chart of Whole Operating System	7
igure 2.3:	HC-05 Bluetooth Module	8
igure 2.4:	Toggle Button Set as a Switch	9
igure 2.5:	Overall Flow of The Safety and Controllable System	11
igure 2.6:	The Fundamental Theory of Passive Infrared Sensor (PIR)	12
igure 2.7:	TI CC3200 Launchpad Board	13
igure 2.8:	The Prototype of Intelligent Home	15
igure 2.9:	Flow Chart for Whole System	17
igure 2.10:	Structure Design of the System	19
igure 2.11:	Working Principle of Zigbee	21
igure 2.12:	The Outcome of Speech Recognition based on Different Pronunciation English Language	23
igure 2.13:	Working Principle of the Project	24
igure 2. 14:	Voice Recognition Function According to the Group	25
ïgure 2. 15:	Connection of Electrical Home Appliances on the Microcontroller Board	27
igure 3.1:	System Architecture Diagram	42

Figure 3.2:	Flow Diagram of Voice Recognition Home Automation using	
	Bluetooth	43
Figure 3.3:	Automated Clothes Rack	44
Figure 3.4:	Sensor Monitoring System and Alert Notification by GSM Module	45
Figure 3.5:	Microcontroller board of Arduino Mega 2560	46
Figure 3.6:	Arduino HC05 Bluetooth Communication Module	48
Figure 3.7:	Arduino IoT 4 Channel Ways Opto-Isolator IC 817C Relay Module	48
Figure 3.8:	Buzzer	51
Figure 3.9:	Arduino LCD 2004 Liquid Crystal Display	51
Figure 3.10:	SIM900A GSM/ GPRS module	52
Figure 3.11:	Light Dependent Resistor (LDR)	56
Figure 3.12:	Arduino IDE Software	56
Figure 3.13:	Arduino Bluetooth Controller Application	57
Figure 4.1:	System Work Schematic Diagram	60
Figure 4.2:	Prototype Hardware Design	62
Figure 4.3:	Arduino Bluetooth Controller Application	63
Figure 4.4:	SMS generated by GSM SIM900A module	64
Figure 4.5:	Condition of clothes horse on daylight without rain	62
Figure 4.6:	Condition of clothes horse on low light intensity and without rain	62
Figure 4.7:	Condition of clothes horse on daylight and with rain	62

Figure 4.8:	1 meter the distance between Bluetooth module and controller	62
Figure 4.9:	5 meter the distance between Bluetooth module and controller	62
Figure 4.10:	10 meter the distance between Bluetooth module and controller	62
Figure 4.11:	15 meter the distance between Bluetooth module and controller	62
Figure 4.12:	17.5 meter the distance between Bluetooth module and controller	62
Figure 4.13:	20 meter the distance between Bluetooth module and controller	70
Figure 4.14:	Performance of Arduino Bluetooth Controller Application	72
Figure 4.15:	Concentration of Butnce gas varied to time	62

xviii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A	Gantt chart for PSM 1	81
APPENDIX B	Gantt chart for PSM 2	82
APPENDIX C	Prototype Project Coding	83

xix

LIST OF ABBREVIATIONS, SYMBOLS AND

NOMENCLATURE

API	-	Application Program Interface
СО	-	Carbon Dioxide
CPU	-	Central Processing Unit
DC	-	Direct Current
EEPROM	-	Electrically Erasable Programmable Read-only Memory
GHz		Giga Hertz
GND		Ground
GSM/ GPRS	-	Global System for Mobile/ General Packet Radio Service
HAS	-	Home Automation System
I/O		Input/ Output
I2C	-	Protocol for two-wire interface to connect low-speed devices
IDE	-	Integrated Development Environment
iOS	-	internet Operating System
IoT	-	Internet of Thing
IR sensor	-	Infrared sensor
LCD		Liquid Crystal Display
LED	-	Light-emitting diode
LPG	-	Liquefied Petroleum Gas
PIR sensor	-	Passive Infrared sensor
PPM	-	Parts per million
PWM	-	Pulse-width modulation
RF	-	Radio-frequency

RX	-	Receive
SMS	-	Short Message Service
SPRAM	-	Spin-Transfer Torque RAM
ТХ	-	Transmit
UART	-	Universal Asynchronous Receiver Transmitter
USB	-	Universal Serial Bus
VCC		Voltage at the Common Collector
Wi-Fi	-	Wireless Fidelity

CHAPTER 1

INTRODUCTION

1.0 Introduction

Home Automation System (HAS) is a system which it can manipulate any electrical device without manually control. There are some of the popular speech recognition application such as Amazon Echo, Google Home and Apple's SIRI as suggested in (Started, 2019). The main purpose of HAS is lead to energy efficiency saving and provide better quality of life. This system is benefit to the elderly and for inconvenient walking people with just using a simple voice command to operate any electrical home appliances. Besides, it also can reduce the amount of remote control, where only one controller needed by the way to control all electrical home appliances.

A Home Automation System (HAS) also relate to the intelligent home appliances, accommodation equipped with network communication, sensory device communicates with the environment and application which able to monitor and control according to the user needs. The wireless HAS is useful to the user as it is able to be control not only in the house, it also able to be control at a far distance. When there is any problem sense by the sensor, the system can either solve it automatically or control by the user according to the instruction being set.

There are variety of wireless communication techniques provided in HAS such as Bluetooth, GSM, Wi-Fi, ZigBee and so on. The HAS is expected to be increased due to the advance features offered in market such as ability in providing information, news, weather, playing music, calling, messaging and more. Apart from this, some home automation system only available in certain countries. For example: Australia, Canada,

France, Germany, United Kingdom and United State. According to global market research (Control, 2019), United State exhibit majority of people use Home Automation System (HAS) with the earning at about USD39.93 Billion in 2016 and forecast will continue to rise in the future.

1.1 Project Background

This project presents the implementation of the prototype of voice recognition wireless home automation and sensor monitoring system based on Bluetooth. Android smartphone is act as a receiver and converter where it Bluetooth feature inside the phone receives the voice command from the user then transmit it into wave form signal to HC-05 Bluetooth module. The Bluetooth module is then converting the signal into nearest matching words or text which have stored in user's google to Arduino MEGA 2560 microcontroller board. Arduino MEGA 2560 microcontroller will then receive the text from Bluetooth module and matching the text to the setup coding. A relay is an electromagnetic switch. It is operating either ON or OFF the appliances according to the signal supplied from the Arduino microcontroller.

GSM SIM900A module is used in this project for alternative alert notification function because Bluetooth cover area is too limited and user cannot get alert if they are not around home. GSM SIM900A module will be used as a media to automatically send Short Message Service (SMS) to user's smartphone. The alert notification will send to the user by SMS when gas leakage detected by MQ-2 gas sensor. The message is set so that the alert notification can be receive by the user at workplaces. Moreover, the clothes horse is set so that can automatically move back when there are raindrops sense by the raindrops detector and low light intensity sense by Light Dependent Resistor (LDR). The clothes horse will then move out in vice versa.

1.2 Problem Statement

Automated and sensor monitoring system are important by the way to give alert notification to the user when there is any gas leakage detected. Instead of it, user may control any home application with only giving a voice command via smartphone without walks around the house. This system not only can make human life become more easier; their life also being protected.

There are many types of home automation system sale in the market but the price is too expensive and some of the application are not available to be use in our country, Malaysia. Moreover, if only if there is system failure, user cannot maintain it by their own and need to pay another maintenance fee.

Besides that, user will hang out the clothes early in the morning before going to work. Therefore, it is unnecessary for them to return home in working hours. The smart clothes horse is benefit to user as it can automated move by its own. Raindrop detector, LDR sensor and limit switch is used to set the condition so that the clothes horse can move in and move out according to the situation.

1.3 Objective

The objective of this project:

- i. To construct a simple and low-cost automated and sensor monitoring system using voice recognition via Android smartphone.
- ii. To develop a user-friendly home application system.
- iii. To analyse the performance of Home Automation System (HAS).