PRODUCT DEVELOPMENT USING REVERSE ENGINEERING (RE) APPROACH

MOHD SHAFFRAN BIN ZAINAL RASHID

A report submitted in partial fulfillment of the requirement for the award of the Degree of Bachelor of Mechanical Engineering (Design and Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > March 2008

C Universiti Teknikal Malaysia Melaka

I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the Bachelor of Mechanical Engineering (Design and Innovation)

Signature	:
Name of supervisor	: Mr. Hambali Bin Boejang
Date	:

Signature	:
Name of supervisor	: Mr. Masjuri Bin Musa
Date	:

I declare that this report entitled "PRODUCT DEVELOPMENT USING REVERSE ENGINEERING (RE) APPROACH" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Author	: Mohd Shaffran Bin Zainal Rashid
Date	: 27 th March 2008

ACKNOWLEDGEMENT

First of all I would like thanks to ALLAH S.W.T because give me a chance to finish my report for Projek Sarjana Muda. Besides that, I also would like to take this opportunity to empress my regards to my supervisor, Mr. Hambali Bin Boejang, Faculty of Mechanical Engineering, UTeM, for his help, advice and guideline for me to understand the project and complete the report.

I want to thank to the technicians who had give information that help me to do the project. I also would like thanks to my colleagues especially to my housemate for their generosity in spending their time and providing me a lot of knowledge during my literature review and sharing their opinion and encouragement in my process of accomplished my Projek Sarjana Muda.

Besides that, I also want to thank to my parents because they always encourage me in what ever I do. Without them I cannot complete my study at this level. Last but not least, I would like to thank to the entire person who had involve directly or indirectly in my Projek Sarjana Muda.

ABSTRACT

Reverse Engineering is a method that transverse from the ordinary of producing an existing product. Normally, the design process is start from drafting or sketching to produce the product. In contrary, the design process in Reverse Engineering is start by getting the data from the existing object. There are two systems that involve in Reverse Engineering (RE) method which are Computer Aided Design (CAD) and Rapid Prototyping (RP). The purpose of this project is to understand the application of Reverse Engineering, Computer Aided Design and Rapid Prototyping in product development using Reverse Engineering approached. It is the bottom-up approached that used in this project. The existing object that used in this project is motorcycle tail lamp. The existing object is scanned using 3D scanning machine which is non-contact method. The scanned data that gained from scanning process is CAD data. The CAD data is then converted to STL file format. Then the STL file is transferred to Rapid Prototyping machine to build the prototype. The completed prototype is then continuing to next process which is post processing. A study was carried out to compare the existing motorcycle tail lamp.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	TABLE OF CONTENT	V
	LIST OF TABLE	ix
	LIST OF FIGURE	х
	LIST OF ABBREVIATION	xiii

CHAPTER 1 INTRODUCTION

1.1	Introduction of the project	1
1.2	Aim	1
1.3	Objective	2
1.4	Scope	2
1.5	Flow chart of PSM 1	3
1.6	Flow chart of PSM 2	4

CHAPTER 2 LITERATURE REVIEW

2.1	REVERSE ENGINEERING (RE)		
	2.1.1	Introduction of Reverse Engineering	5
	2.1.2	Common uses of Reverse Engineering	5
	2.1.3	Type of Reverse Engineering	6
		2.1.3.1 Contact Method	6
		2.1.3.2 Non-Contact Method	6
	2.1.4	Point Cloud Data	8

	2.1.5	Typical Workflow in	
		Reverse Engineering	9
	2.1.6	Non Uniform Rational B-Spline	
		(NURBS)	13
	2.1.7	Application of Reverse Engineering	14
2.2	COM	PUTER AIDED DESIGN (CAD)	15
	2.2.1	Introduction to Computer Aided	
		Design	15
	2.2.2	Types of Modeling	16
		2.2.2.1 Solid Modeling	16
		2.2.2.2 Surface Modeling	17
	2.2.3	Advantages and Disadvantages of	
		CAD	18
	2.2.4	Capabilities of CAD	19
	2.2.5	STL File Format	20
		2.2.5.1 Advantages and Disadvantage	es
		of STL file format	20
2.3	RAPI	D PROTOTYPING (RP)	21
	2.3.1	Introduction of Rapid Prototyping	21
	2.3.2	Advantages of Rapid Prototyping	21
		2.3.2.1 Direct Benefits	21
		2.3.2.2 Indirect Benefits	22
	2.3.3	Classification of Rapid Prototyping	
		System	22
		2.3.3.1 Liquid-Based RP System	22
		2.3.3.1.1 Process of SLA	24
		2.3.3.2 Solid-Based RP System	24
		2.3.3.2.1 Process of FDM	26
		2.3.3.3 Powder-Based RP System	27
		2.3.3.3.1 Process of 3DP	29

2.3.4	Types of Rapid Prototyping	
	2.3.4.1 Subtractive Process	29
	2.3.4.2 Addictive Process	30
	2.3.4.3 Formative Process	30
2.3.5	Rapid Prototyping Process Chain	30
2.3.6	Application of Rapid Prototyping	32

CHAPTER 3 METHODOLOGY

3.1	Introduction	33
3.2	Project Development Flow Chart	33
3.3	Project Definition and Planning	34
3.4	Reverse Engineering Phase	35
3.5	Computer Aided Design Phase	36
3.6	Rapid Prototyping Phase	37
3.7	Comparison Phase	38

CHAPTER 4 RESULT

4.1	Motor	cycle Tail Lamp	40
	4.1.1	The Outside Surface	40
	4.1.2	The Inside Surface	41
4.2	Refere	ence Point	42
4.3	Reverse Engineering Using		
	REXC	CAN/ ezScan 4.5	42
	4.3.1	Surface	46
	4.3.2	Scanning the Outside Surface	47
	4.3.3	Scanning the Inside Surface	50
	4.3.4	Merge All the Scanned Data	53

CHAPTER 5 DISCUSSION

5.1	Analysis	60
5.2	Scanned Data Problem	62
5.3	Analysis Problem	68
	5.3.1 Data Translation Problem	68
	5.3.2 Magics RP	69
	5.3.3 Insight Software	72

CHAPTER 6 CONCLUSION AND RECOMMENDATION

6.1	Conclusion	75
6.2	Recommendation	76

REFERENCES 77

APPENDIX

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	TABLE OF CONTENT	V
	LIST OF TABLE	ix
	LIST OF FIGURE	х
	LIST OF ABBREVIATION	xiii

CHAPTER 1 INTRODUCTION

1.1	Introduction of the project	1
1.2	Aim	1
1.3	Objective	2
1.4	Scope	2
1.5	Flow chart of PSM 1	3
1.6	Flow chart of PSM 2	4

CHAPTER 2 LITERATURE REVIEW

2.1	REVE	RSE ENGINEERING (RE)	5
	2.1.1	Introduction of Reverse Engineering	5
	2.1.2	Common uses of Reverse Engineering	5
	2.1.3	Type of Reverse Engineering	6
		2.1.3.1 Contact Method	6
		2.1.3.2 Non-Contact Method	6
	2.1.4	Point Cloud Data	8

	2.1.5	Typical Workflow in	
		Reverse Engineering	9
	2.1.6	Non Uniform Rational B-Spline	
		(NURBS)	13
	2.1.7	Application of Reverse Engineering	14
2.2	COM	PUTER AIDED DESIGN (CAD)	15
	2.2.1	Introduction to Computer Aided	
		Design	15
	2.2.2	Types of Modeling	16
		2.2.2.1 Solid Modeling	16
		2.2.2.2 Surface Modeling	17
	2.2.3	Advantages and Disadvantages of	
		CAD	18
	2.2.4	Capabilities of CAD	19
	2.2.5	STL File Format	20
		2.2.5.1 Advantages and Disadvantage	es
		of STL file format	20
2.3	RAPI	D PROTOTYPING (RP)	21
	2.3.1	Introduction of Rapid Prototyping	21
	2.3.2	Advantages of Rapid Prototyping	21
		2.3.2.1 Direct Benefits	21
		2.3.2.2 Indirect Benefits	22
	2.3.3	Classification of Rapid Prototyping	
		System	22
		2.3.3.1 Liquid-Based RP System	22
		2.3.3.1.1 Process of SLA	24
		2.3.3.2 Solid-Based RP System	24
		2.3.3.2.1 Process of FDM	26
		2.3.3.3 Powder-Based RP System	27
		2.3.3.3.1 Process of 3DP	29

2.3.4	Types of Rapid Prototyping	29
	2.3.4.1 Subtractive Process	29
	2.3.4.2 Addictive Process	30
	2.3.4.3 Formative Process	30
2.3.5	Rapid Prototyping Process Chain	30
2.3.6	Application of Rapid Prototyping	32

CHAPTER 3 METHODOLOGY

3.1	Introduction	33
3.2	Project Development Flow Chart	33
3.3	Project Definition and Planning	34
3.4	Reverse Engineering Phase	35
3.5	Computer Aided Design Phase	36
3.6	Rapid Prototyping Phase	37
3.7	Comparison Phase	38

CHAPTER 4 RESULT

4.1	Motor	cycle Tail Lamp	40
	4.1.1	The Outside Surface	40
	4.1.2	The Inside Surface	41
4.2	Refere	ence Point	42
4.3	Rever	se Engineering Using	
	REXC	CAN/ ezScan 4.5	42
	4.3.1	Surface	46
	4.3.2	Scanning the Outside Surface	47
	4.3.3	Scanning the Inside Surface	50
	4.3.4	Merge All the Scanned Data	53

CHAPTER 5 DISCUSSION

5.1	Analysis	60
5.2	Scanned Data Problem	62
5.3	Analysis Problem	68
	5.3.1 Data Translation Problem	68
	5.3.2 Magics RP	69
	5.3.3 Insight Software	72

CHAPTER 6 CONCLUSION AND RECOMMENDATION

6.1	Conclusion	75
6.2	Recommendation	76

REFERENCES 77

APPENDIX

LIST OF TABLE

TABLE NO	TITLE	PAGE
2.1	Typical RE Application	14

LIST OF FIGURE

FIGURE NO

TITLE

PAGE

1.1	Flow Chart of PSM 1	3
1.2	Flow Chart of PSM 2	4
2.1	Principles of A Laser Triangulation Sensor	8
2.2	Cloud Point	9
2.3	Polygonal Model	10
2.4	Draw Curves on the Mesh	10
2.5	Restructured Spring	11
2.6	NURBS Surfaces	11
2.7	Final Result of NURBS Surface	12
2.8	Final Object	12
2.9	NURBS Control Point and Control Polygon	13
2.10	The CAD Process	15
2.11	A Design Drawing for An Engine	17
2.12	A CAD Model of A Mouse	18
2.13	Diagram of Stereolithography Apparatus	23
2.14	Viper Si2	23
2.15	The FDM Process	25
2.16	FDM Prodigy Plus	26
2.17	Diagram of Three Dimensional Printing	28
2.18	Z450 3D Printer	28
2.19	Three Types of Fundamental Fabrication Process	30
2.20	Process Chain of Rapid Prototyping	30
2.21	Typical Application Area of RP	32
3.1	Overall Methodology	34
3.2	Project Definition and Planning Phase Process	35
3.3	Reverse Engineering Phase Process	36
3.4	Computer Aided Design Phase Process	37

3.5	Rapid Prototyping Phase Process	38
3.6	Comparison Phase Process	39
4.1	Outside Surface of the Tail Lamp	41
4.2	Inside Surface of the Tail Lamp	41
4.3	Reference Point	42
4.4	Scanned Object at Scanned Table	43
4.5	Camera Window of REXCAN	43
4.6	Adjustment of the Distance	44
4.7	Adjustment of the Brightness	45
4.8	Scanned Process	45
4.9	The Scanned Object Spray With	
	Flaw Detection Agent	46
4.10	After Spray With Flaw Detection Agent	47
4.11	1 st View of the Outside Surface	48
4.12	2 nd View of the Outside Surface	48
4.13	3 rd View of the Outside Surface	49
4.14	Merge of the Outside Surface	50
4.15	Inside Surface	51
4.16	Two Scanned Data In One Window	52
4.17	The Move Object Is In Blue In Color	53
4.18	The Scanned Data Is Not Merge	54
4.19	Complete Scanned Data	54
4.20	Motorcycle Tail Lamp Scanned Object	55
4.21	Motorcycle Tail Lamp Scanned Data	55
4.22	Screw Hole of Scanned Object	56
4.23	Screw Hole of Scanned Data	56
4.24	Critical Part of Scanned Object	57
4.25	Critical Part of Scanned Data	57
4.26	Inside Surface of the Scanned Object	58
4.27	Inside Surface of the Scanned Data	58
4.28	Holes of the Scanned Object	59

4.29	Holes of the Scanned Data	59
5.1	General of The Project Flow	60
5.2	REXCAN 3D Scanner	61
5.3	Missing Faces	62
5.4	Fill Holes	63
5.5	Fill Holes Popup Menu	63
5.6	Smoothing	64
5.7	Smoothing Popup Menu	65
5.8	Improve Shape Quality	66
5.9	Before Add Faces	66
5.10	After Add Faces	67
5.11	Scanned Data in Magics RP Software	69
5.12	Scanned Data In Triangle View	69
5.13	Before Error Recovery	70
5.14	After Error Recovery	71
5.15	Insight Workspace	72
5.16	Processing Model	73
5.17	Error Summary	74

LIST OF ABBREVIATION

2D	Two Dimensions
3D	Three Dimensions
CAD	Computer Aided Design
CAM	Computer Aided Manufacturing
FDM	Fused Deposition Modeling
NURBS	Non-Uniform Rational B-Spline
RE	Reverse Engineering
RP	Rapid Prototyping
SLA	Stereolithography Apparatus
STL	Standard Triangular Language

CHAPTER 1

INTRODUCTION

1.1 Introduction of the project

The engineering field is growth faster. The new product, new technology or new system has been introduced. In engineering field, Computer Aided Design (CAD) is familiar to engineers. CAD is making the design faster and effective. However, the manual drafting and sketching still been used by engineers.

There are new technologies that are now growth within time. Reverse Engineering (RE) and Rapid Prototyping (RP) are the new technologies that now all the engineers are learned. Reverse Engineering (RE), Computer Aided Design (CAD) and Rapid Prototyping (RP) are related together. These three technologies are making the engineering field easier to produce and analysis any part or product.

1.2 Aim

The aim of this thesis is to understand the application of RE, CAD, and RP in product development using RE approach. The scanned object in this thesis is motorcycle tail lamp. The analysis in this thesis is part to part and CAD to part comparison. This product development involves the application of RE method to get the physical data of existing motorcycle tail lamp. The scanned data of the motorcycle tail lamp will be manipulated to obtain the 3D CAD data. This 3D CAD data is then used in RP machine to make the prototype.

1.3 Objective

The objective of this thesis is to apply a product development by using Reverse Engineering (RE) approach. In this thesis, motorcycle tail lamp is the product that will be developed by using Reverse Engineering (RE), Computer Aided Design (CAD) and Rapid Prototyping (RP) method.

1.4 Scope

The scope of this thesis is to:

- I. Study on the Reverse Engineering (RE), Computer Aided Design (CAD) and Rapid Prototyping (RP).
- II. Manipulate the scanned data to obtain the CAD data for the motorcycle tail lamp.
- III. Create a prototype of the product using RP machine.
- IV. Compare the existing part to the prototype part.
- V. Compare RE CAD data to existing part

1.5 Flow Chart of PSM 1

Figure 1.1: Flow Chart of PSM 1

Figure 1.2: Flow Chart of PSM 2

CHAPTER 2

LITERATURE REVIEW

2.1 REVERSE ENGINEERING (RE)

2.1.1 Introduction of Reverse Engineering (RE)

Reverse Engineering (RE) is the process of capturing the 3 Dimension object form and transfer to a computer compatible representation. RE is also a process of creating engineering design data from the existing part. In some cases, RE is necessary only to extract 2 Dimension profile data from the model as the complete part may be efficiently modeled using these profiles and a surface or solid Computer Aided Design (CAD) / Computer Aided Manufacturing (CAM) system [1]. There are several methods that the object form can be captured for RE. The method chosen is depending on the object complexity and accuracies requirement from the digitization process [2]. The first step of RE in the process to produce the product is the physical model to CAD data. The next step of the RE is to convert the CAD data into a usable form.

2.1.2 Common uses of Reverse Engineering

- As a learning tool.
- As a way to make new compatible product.
- For making software interoperate more effectively.
- To uncover the uncoordinated features or commercial products.

2.1.3 Type of Reverse Engineering

The simple models can be measured with vernier calipers and recreated in the CAD system based on measurements. However, for the complex model, there are two type of RE which is contact and non-contact.

2.1.3.1 Contact Method

Co-ordinate Measuring Machine (CMM) is the contact method. CMM provides higher accuracy in the micron range but it is subject to slow the data sampling times. CMM takes the data by a touch probe. It touches the part surface using the probe at a certain point. The surface scanning CMM can take the sample at one point per second. The less sophisticated CMM has much lower data collection rates. CMM is more high accuracy than the 3D Vision System. The disadvantage of CMM is it touches the scanned object. Thus, the act of scanning the object might modify or damage it. This contact method is very significant when scanning valuable objects such as historical artifacts. The other disadvantage of CMMs is that they are relatively slow compared to the other scanning methods. Physically moving the arm that the probe is mounted on can be very slow and the fastest CMMs can only operate on a few hundred hertz [3].

2.1.3.2 Non-Contact Method

3D Vision System is one of the non-contact methods. The 3D Vision System has the ability to take the sample at higher rates but it loses to CMM in accuracy specifications. The 3D Vision System has no touch probe and it capable to measure the 3D point on a surface. The 3D Vision System can increase the speed of the RE process. Compare to the touch probe, 3D Vision System have the advantages of high data collection speed, up to 10 000 per second depending on the type of sensor employed and non-contact measurement [4]. The non-contact method is much faster collecting data than contact method.