EFFECT OF VARIOUS TEMPERATURE ON GRAPHENE BASED CONDUCTIVE INK

SITI AMIRAH BINTI ABDULLAH

A report submitted in fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

KESAN PELBAGAI SUHU TERHADAP DAKWAT KONDUKTIF BERASASKAN GRAPHENE

SITI AMIRAH BINTI ABDULLAH

Laporan ini dikemukakan sebagai memenuhi sebahagian daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal

Fakulti Kejuruteraan Mekanikal

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project report entitled "Effect of Various Temperature on Graphene Based Conductive Ink" is the result of my own work except as cited in the references.

Signature	:	
Name	:	Siti Amirah binti Abdullah
Date	:	June 2020

PENGAKUAN

Saya akui laporan ini yang bertajuk "Kesan Pelbagai Suhu terhadap Dakwat Konduktif Berasaskan Graphene" adalah hasil kerja saya sendiri kecuali yang dipetik daripada sumber rujukan.

Tandatangan	:	
Nama	:	Siti Amirah binti Abdullah
Tarikh	:	June 2020

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:
Supervisor's Name	: Ts. Dr. Mohd Azli bin Salim
Date	:

PENGESAHAN PENYELIA

Saya akui bahawa telah membaca laporan ini dan pada pandangan saya laporan ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal.

Tandatangan	:
Nama Penyelia	: Ts. Dr. Mohd Azli bin Salim
Tarikh	:

ABSTRACT

The outstanding characteristics of graphene, with its good mechanical and electrical characteristics, have made it one of the best candidates to replace other conductive material when developing conductive ink. Graphene properties and the way to improve it have been researched for a decade. In this study, the development of graphene-based conductive ink and graphene properties was overview in order to understand more about the characteristics of graphene, binders and substrate. Some research was conducted to find a factor that could affect the performance of graphene conductive ink, in order to develop a new idea to improve the production of graphene conductive ink. This study shows that the performance of graphene conductive ink is mostly influenced by the conductive ink structure. While the good surface and structure of the graphene conductive ink depending on the stage of the sample preparation. This is because a lot of errors can occur at that time. For example, the formulation matrix for composition, the temperature for the curing process and patterning and printing method. Such factors may have an effect on the development of conductive ink. Therefore, this study focused more on observing the effect of various curing temperatures in order to produce a good linkage between the binders and the filler and several experiments are also being performed to determine the resistance, voltage and microscopy image of the graphene conductive ink. The study was conduct on three size of sample which is 1 mm, 2 mm and 3 mm and with four difference patterns and was cure under temperature of 90 °C, 100 °C and 110 °C. The outcome show sheet resistivity was lower at 3 mm width and at temperature of 110 °C. Thus the finding from this study are, sheet resistivity was decrease by increasing the width and the curing temperature for graphene based conductive ink.

ABSTRAK

Ciri luar biasa graphene, dengan terdapat ciri mekanikal dan elektrikal yang baik, menjadikan ia salah satu calon terbaik untuk menggantikan bahan konduktif lain bagi menghasilkan dakwat konduktif. Sifat-sifat Graphene dan cara memperbaikinya telah diteliti selama satu dekad. Dalam kajian ini, penghasilan dakwat konduktif berasaskan graphene dan sifat graphene adalah gambaran keseluruhan untuk memahami lebih lanjut mengenai ciri-ciri graphene, pengikat dan substrat. Beberapa kajian dilakukan untuk mencari faktor yang dapat mempengaruhi prestasi dakwat konduktif berasaskan graphene, untuk mengembangkan idea baru bagi meningkatkan fungsinya. Kajian ini menunjukkan bahawa prestasi dakwat konduktif graphene kebanyakannya dipengaruhi oleh struktur dakwat konduktif. Manakala permukaan dan struktur dakwat konduktif berasaskan graphene yang baik bergantung pada tahap penyediaan dakwat konduktif. Ini kerana banyak kesalahan boleh berlaku pada masa itu. Antaranya ialah, matriks formulasi untuk komposisi, suhu untuk proses pemanasan dan kaedah percetakan. Faktor-faktor tersebut boleh memberi kesan kepada penghasilan dakwat konduktif. Oleh itu, kajian ini lebih memfokuskan kepada pemerhatian kesan pelbagai suhu pemanasan dakwat konduktif untuk menghasilkan hubungan yang baik antara pengikat dan pengisi dan beberapa eksperimen juga dilakukan untuk menentukan rintangan, voltan dan gambar mikroskopi dakwat konduktif graphene. Kajian dilakukan pada tiga ukuran sampel iaitu 1 mm, 2 mm dan 3 mm dan dengan empat corak perbezaan dan dipanaskan pada suhu 90 °C, 100 °C dan 110 °C. Hasilnya menunjukkan rintangan lebih rendah pada lebar 3 mm dan pada suhu 110 °C. Oleh itu,

penemuan dari kajian ini adalah, rintangan akan berkurang dengan meningkatkan lebar dan suhu pengawetan untuk dakwat konduktif berasaskan graphene.

ACKNOWLEDGEMENT

This thesis has been successfully completed with the help and support from many individuals with directly or indirectly. I would like to express my gratitude towards them.

First of all, I would like to thank Faculty of Mechanical Engineering to provide me laboratory with a complete equipment for me to use in order to run my experiment. My full gratitude also for Universiti Teknikal Malaysia Melaka (UTeM) also providing a library with good facilities for me to do my research.

I owe my deepest gratitude towards my supervisor, TS. DR. Mohd Azli Bin Salim who always give me useful guidance and provide me knowledge with his experience. I am also thankful for him to help me with providing some research and reference that were necessary for this thesis. I also would like to thank my supervisor's Phd student, En. Hisham which is very helpful in terms of giving instruction on conducting the experiment and also guide me to find a good resource.

I want to thank all my fellow friends for their helps and encouragement for me to continue my study on this thesis especially my friend who are also under the same supervision with me which always give me support and valuable guidance.

Also thank to my family especially my parents who always give moral support and financial support for me to complete my study. Biggest gratitude also goes to all of the individuals who directly and indirectly help me during completing this thesis.

v

TABLE OF CONTENT

DECI	LARATION	
APPR	ROVAL	
ABST	RACT	i
ACK	NOWLEDGEMENT	v
TABI	LE OF CONTENT	vi
LIST	OF FIGURES	xiii
LIST	OF TABLES	xviii
LIST	OF SYMBOL	xviii
CHA	PTER 1	1
INTR	ODUCTION	1
1.1	Introduction	1
1.2	Background	1
1.3	Objective	6
1.4	Problem Statement	6
1.5	Scope of Project	6
CHAI	PTER 2	7
LITE	RATURE REVIEW	7
2.1	Conductive Ink	7
2.2	Graphene	8
2.	.2.1 Introduction	8
2.	.2.2 Formulation and Preparation of Graphene	8
2.	.2.3 Properties of Graphene	10

i	. Mechanical properties of graphene	11
i	i. Electrical properties of graphene	12
i	ii. Thermal Properties of graphene	12
2.2	2.4 Modification of graphene	13
2.3	Binder	14
2.3	8.1 Epoxy	15
2.4	Formulation of Graphene and Binder	16
2.5	Substrates	18
2.6	Patterning or Printing	18
2.7	Application of Graphene Based Ink	19
2.8	Temperature Effect	19
CHAP	TER 3	22
CHAP METH	TER 3 IODOLOGY	22 22
CHAP METH 3.1	TER 3 IODOLOGY Introduction	 22 22 22 22
CHAP METH 3.1 3.2	TER 3 IODOLOGY Introduction Material	 22 22 22 25
CHAP METH 3.1 3.2 3.2	TER 3 IODOLOGY Introduction Material 2.1 Graphene	 22 22 22 25 25
CHAP METH 3.1 3.2 3.2 3.2	TER 3 TER 3 TODOLOGY Introduction Material 2.1 Graphene 2.2 Epoxy	 22 22 22 25 25 26
CHAP METH 3.1 3.2 3.2 3.2 3.2	TER 3 IODOLOGY Introduction Material 2.1 Graphene 2.2 Epoxy 2.3 Hardener	 22 22 25 25 26 26
CHAP METH 3.1 3.2 3.2 3.2 3.2 3.2 3.2	TER 3 TODOLOGY Introduction Material 2.1 Graphene 2.2 Epoxy 2.3 Hardener 2.4 Formulation	 22 22 22 25 25 26 26 26
CHAP METH 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	TER 3 IDDOLOGY Introduction Material 2.1 Graphene 2.2 Epoxy 2.3 Hardener 2.4 Formulation Equipment & Procedure	 22 22 22 25 25 26 26 26 28
CHAP METH 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	TER 3 IODOLOGY Introduction Material 2.1 Graphene 2.2 Epoxy 2.3 Hardener 2.4 Formulation Equipment & Procedure 3.1 TPU Substrate	 22 22 22 25 25 26 26 26 28 28

3.3.3	Thinky Mixer	30
3.3.4	Stencil Printing	31
3.3.5	Curing Oven	32
3.3.6	Four-Point Probe Device	33
3.3.7	Light Microscope	34
CHAPTER	4	36
RESULT A	ND DISCUSSION	36
4.1 Intr	roduction	36
4.2 Fou	ur-Point Probe (Sheet Resistance)	37
4.2.1	Straight Line for Temperature 90 °C	38
4.2.2	Zig Zag for Temperature 90 °C	40
4.2.3	Square for Temperature 90 °C	42
4.2.4	Sinusoidal for Temperature 90 °C	44
4.2.5	Straight Line for Temperature 100 °C	46
4.2.6	Zig Zag for Temperature 100 °C	48
4.2.7	Square for Temperature 100 °C	50
4.2.8	Sinusoidal for Temperature 100 °C	52
4.2.9	Straight Line for Temperature 110 °C	54
4.2.10	Zig Zag for Temperature 110 °C	56
4.2.11	Square for Temperature 110 °C	58
4.2.12	Sinusoidal for Temperature 110 °C	60
4.3 Fou	ur-Point Probe (Voltage)	62

	4.3.1	Straight Line for Temperature 90 °C	63
	4.3.2	Zig Zag for Temperature 90 °C	65
	4.3.3	Square for Temperature 90 °C	67
	4.3.4	Sinusoidal for Temperature 90 °C	69
	4.3.5	Straight Line for Temperature 100 °C	71
	4.3.6	Zig Zag for Temperature 100 °C	73
	4.3.7	Square for Temperature 100 °C	75
	4.3.8	Sinusoidal for Temperature 100 °C	77
	4.3.9	Straight Line for Temperature 110 °C	78
	4.3.10	Zig Zag for Temperature 110 °C	80
	4.3.11	Square for Temperature 110 °C	82
	4.3.12	Sinusoidal for Temperature 110 °C	84
4	.4 Rel	ationship between Sheet Resistivity and Microscopy Image	86
	4.4.1	Straight Line Width 2 mm for Temperature 90 °C	87
	4.4.2	Straight Line Width 3 mm for Temperature 90 °C	88
	4.4.3	Zig Zag Width 2 mm for Temperature 90 °C	89
	4.4.4	Zig Zag Width 3 mm for Temperature 90 °C	90
	4.4.5	Square Width 2 mm for Temperature 90 °C	91
	4.4.6	Square Width 3 mm for Temperature 90 °C	92
	4.4.7	Sinusoidal Width 2 mm for Temperature 90 °C	93
	4.4.8	Sinusoidal Width 3 mm for Temperature 90 °C	94
	4.4.9	Straight Line Width 3 mm for Temperature 100 °C	95

ix

4.4.10	Zig Zag Width 2 mm for Temperature 100 °C	96
4.4.11	Zig Zag Width 3 mm for Temperature 100 °C	97
4.4.12	Square Width 2 mm for Temperature 100 °C	98
4.4.13	Square Width 3 mm for Temperature 100 °C	99
4.4.14	Sinusoidal Width 2 mm for Temperature 100 °C	100
4.4.15	Sinusoidal Width 3 mm for Temperature 100 °C	101
4.4.16	Straight Line Width 2 mm for Temperature 110 °C	102
4.4.17	Straight Line Width 3 mm for Temperature 110 °C	103
4.4.18	Zig Zag Width 2 mm for Temperature 110 °C	104
4.4.19	Zig Zag Width 3 mm for Temperature 110 °C	105
4.4.20	Square Width 2 mm for Temperature 110 °C	106
4.4.21	Square Width 3 mm for Temperature 110 °C	107
4.4.22	Sinusoidal Width 2 mm for Temperature 110 °C	108
4.4.23	Sinusoidal Width 3 mm for Temperature 110 °C	109
4.5 Re	sistivity Between Temperature	110
4.5.1	Average Resistivity for Straight Line Width 2 mm	111
4.5.2	Average Resistivity for Straight Line Width 3 mm	112
4.5.3	Average Resistivity for Zig Zag Width 1 mm	113
4.5.4	Average Resistivity for Zig Zag Width 2 mm	114
4.5.5	Average Resistivity for Zig Zag Width 3 mm	115
4.5.6	Average Resistivity for Square Width 1 mm	116
4.5.7	Average Resistivity for Square Width 2 mm	117

х

4.5.8	Average Resistivity for Square Width 3 mm	118
4.5.9	Average Resistivity for Sinusoidal Width 1 mm	119
4.5.10	Average Resistivity for Sinusoidal Width 2 mm	120
4.5.11	Average Resistivity for Sinusoidal Width 3 mm	121
4.6 V	oltage Between Temperature	122
4.6.1	Average Voltage for Straight Line Width 2 mm	122
4.6.2	Average Voltage for Straight Line Width 3 mm	123
4.6.3	Average Voltage for Zig Zag Width 1 mm	124
4.4.4	Average Voltage for Zig Zag Width 2 mm	125
4.6.5	Average Voltage for Zig Zag Width 3 mm	126
4.6.6	Average Voltage for Square Width 1 mm	127
4.6.7	Average Voltage for Square Width 2 mm	128
4.6.8	Average Voltage for Square Width 3 mm	129
4.6.9	Average Voltage for Sinusoidal Width 1 mm	130
4.6.10	Average Voltage for Sinusoidal Width 2 mm	131
4.6.11	Average Voltage for Sinusoidal Width 3 mm	132
4.7 Micro	oscopy Image of Sample between Temperature	133
4.7.1	Microscopy Image for Straight Line Width 2 mm	134
4.7.2	Microscopy Image for Straight Line Width 3 mm	135
4.7.3	Microscopy Image Zig Zag Width 2 mm	136
4.7.4	Microscopy Image for Zig Zag Width 3 mm	137
4.7.5	Microscopy Image for Square Width 2 mm	138

xi

REFER	RENCES	147
CONC	LUSION AND RECOMMENDATION	145
4.10	Possibility of Errors during Preparation of Samples and Experimental	144
Cond	uctive Ink	143
4.9	Summarization of the Effect of Curing Temperature towards Graphene Based	
the G	raphene Based Conductive Ink	142
4.8	Summarization of the Effect of the Width of the Sample towards Resistivity o	f
4.7	.8 Microscopy Image for Sinusoidal Width 3 mm	141
4.7	.7 Microscopy Image for Sinusoidal Width 2 mm	140
4.7	.6 Microscopy Image for Square Width 3 mm	139

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Preparation of Chemical Converted Graphene (CCG) by	
	Reduction of Graphene Oxide	10
3.1	Flow Chart	24
3.2	Material Used for Process of Composition; Hardener, Graphene	
	Nanoplatelets, Epoxy	25
3.3	Thermoplastic Polyurethane, TPU Substrate	28
3.4	Digital Scale (Mettler Toledo)	29
3.5	Thinky Mixture	30
3.6	Stencil Printing	31
3.7	Curing Oven	32
3.8	Four-Point Probe Device	33
3.9	Light Microscope	34
4.1	Graph of Average Sheet Resistance between Sizes, 2mm and	
	3mm for Temperature 90 °C Pattern Straight Line	39
4.2	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 90 °C Pattern Zig Zag	41
4.3	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 90 °C Pattern Square	43
4.4	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 90 °C Pattern Sinusoidal	45
4.5	Graph of Average Resistance for Size 3mm for Temperature	
	100 °C Pattern Straight Line	47
4.6	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 100 °C Pattern Zig Zag	49

4.7	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 100 °C Pattern Square	51
4.8	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 100 °C, Pattern Sinusoidal	53
4.9	Graph of Average Resistance between Sizes, 2mm and 3mm for	
	Temperature 110 °C, Pattern Straight Line	55
4.10	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 110 °C, Pattern Zig Zag	57
4.11	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 110 °C for Square Pattern	59
4. 12	Graph of Average Resistance between Sizes, 1mm, 2mm and	
	3mm for Temperature 110 °C, Pattern Sinusoidal	61
4.13	Graph of Average Voltage between Sizes, 2mm and 3mm for	
	Temperature 90 °C for Pattern Straight Line	64
4.14	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 90 °C for Pattern Zig Zag	66
4.15	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 90 °C for Pattern Square	68
4. 16	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 90 °C for Pattern Sinusoidal	70
4. 17	Graph of Average Voltage for Size 3mm for Temperature 100	
	°C for Pattern Straight Line	72
4.18	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 100 °C for Pattern Zig Zag	74
4. 19	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 100 °C for Square Pattern	76
4.20	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 100 °C for Sinusoidal Pattern	77
4. 21	Graph of Average Voltage between Sizes, 2mm and 3mm for	
	Temperature 110 °C for Straight Line Pattern	79
4.22	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 110 °C for Zig Zag Pattern	81

4.23	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 110 °C for Square Pattern	83
4.24	Graph of Average Voltage between Sizes, 1mm, 2mm and 3mm	
	for Temperature 110 °C for Sinusoidal Pattern	85
4. 25	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Straight Line	87
4. 26	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Straight Line	88
4.27	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Zig Zag	89
4.28	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Zig Zag	90
4.29	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Square	91
4.30	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Square	92
4.31	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Sinusoidal	93
4.32	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Sinusoidal	94
4.33	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Straight Line	95
4. 34	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Zig Zag	96
4.35	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Zig Zag	97
4.36	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Square	98
4. 37	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Square	99
4.38	Graph of Average Resistivity for Sample 2 Width for 2 mm	
	Pattern Sinusoidal	100

4. 39	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Sinusoidal	101
4.40	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Straight Line	102
4.41	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Straight Line	103
4.42	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Zig Zag	104
4.43	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Zig Zag	105
4.44	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Square	106
4.45	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Square	107
4.46	Graph of Average Resistivity for Sample 2 Width 2 mm Pattern	
	Sinusoidal	108
4.47	Graph of Average Resistivity for Sample 2 Width 3 mm Pattern	
	Sinusoidal	109
4.48	Graph of Average Resistivity between Temperature 90 °C and	
	110 °C for Pattern Straight Line Width 2 mm	111
4.49	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Straight Line Width 3 mm	112
4.50	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Zig Zag Width 1 mm	113
4.51	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Zig Zag Width 2 mm	114
4.52	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Zig Zag Width 3 mm	115
4.53	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Square Width 1 mm	116
4.54	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Square Width 2 mm	117

4.55	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Square Width 3 mm	118
4.56	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Sinusoidal Width 1 mm	119
4. 57	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Sinusoidal Width 2 mm	120
4. 58	Graph of Average Resistivity between Temperature 90 °C, 100	
	°C and 110 °C for Pattern Sinusoidal Width 3 mm	121
4. 59	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Straight Line Width 2 mm	122
4.60	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Straight Line Width 3 mm	123
4. 61	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Zig Zag Width 1 mm	124
4.62	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Zig Zag Width 2 mm	125
4.63	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Zig Zag Width 3 mm	126
4.64	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Square Width 1 mm	127
4.65	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Square Width 2 mm	128
4.66	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Square Width 3 mm	129
4. 67	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Sinusoidal Width 1 mm	130
4. 68	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Sinusoidal Width 2 mm	131
4. 69	Graph of Average Voltage between Temperature 90 °C, 100 °C	
	and 110 °C for Pattern Sinusoidal Width 3 mm	132

xvii

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Composition of Graphene Loading	17
3.1	Composition of Graphene with Epoxy and Hardener	27
4.1	Result of Average Resistance for Pattern Straight Line, Size	
	2mm and 3 mm for temperature 90 °C	38
4.2	Result of Average Resistance for Pattern Zig Zag, Size 1 mm,	
	2mm and 3 mm for temperature 90 °C	40
4.3	Result of Average Resistance for Pattern Square, Size 1 mm,	
	2mm and 3 mm for temperature 90 °C	42
4.4	Result of Average Resistance for Pattern Sinusoidal, Size 1	
	mm, 2mm and 3 mm for temperature 90 °C	44
4.5	Result of Average Resistance for Pattern Straight Line Size 3	
	mm for temperature 100 °C	46
4.6	Result of Average Resistance for Pattern Zig Zag, Size 1 mm,	
	2mm and 3 mm for Temperature 100 °C	48
4.7	Result of Average Resistance for Pattern Square, Size 1 mm,	
	2mm and 3 mm for Temperature 100 °C	50
4.8	Result of Average Resistance for Pattern Sinusoidal, Size 1	
	mm, 2mm and 3 mm for Temperature 100 °C	52
4.9	Result of Average Resistance for Pattern Straight Line, Size	
	2mm and 3 mm for Temperature 110 °C	54
4.10	Result of Average Resistance for Pattern Zig Zag, Size 1 mm,	
	2mm and 3 mm for Temperature 110 °C	56
4.11	Result of Average Resistivity for Pattern Square, Size 1 mm,	
	2mm and 3 mm for Temperature 110 °C	58