

DESIGN AND ANALYSIS OF DISC TYPE WATER FILTER USING LATTICE MESH STRUCTURES FOR ADDITIVE MANUFACTURING FABRICATION

Submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Hons.)

by

NUDRA SYAFINA BINTI MOHD YAZID B051610067 970607-01-6010

FACULTY OF MANUFACTURING ENGINEERING 2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN AND ANALYSIS OF DISC TYEP WATER FILTER USING
LATTICE MESH STRUCTURE FOR ADDITIVE MANUFACTURING
FABRICATION

Sesi Pengajian: 2019/2020 Semester 2

Saya NUDRA SYAFINA BINTI MOHD YAZID (970706-01-6010)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

/ TIDAK TERHAD

Alamat Tetap: 432, BLOK 5, FELDA AIR TAWAR 01, 81920 KOTA TINGGI, JOHOR. Tarikh: 4 September 2020

Disahkan oleh:

Cop Rasmi: HAZMAN BIN HASIB Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka Hang Tuah Jaya Tarikh: 97449 Durjan Tunggal, Melaka

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Analysis of Disc-Type Water Filter Using Lattice Mesh Structures for Additive Manufacturing Fabrication" is the result of my own research except as cited in references.

Signature Author's Name Date

.....

: NUDRA SYAFINA BINTI MOHD YAZID : 2020

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for the degree of Bachelor of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

(En. Hazman Bin Hasib)

HAZMAN BIN HASIB Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal, Melaka

ABSTRAK

Dengan matlamat mencapai Revolusi Industri (IR) 4.0, struktur kekisi bukan stokastik digunakan secara meluas dalam pelbagai aplikasi termasuk implan bioperubatan dan penukar haba. Walau bagaimanapun, dalam aplikasi penapisan, penggunaan struktur kekisi masih baru. Di samping itu, penggunaan cetakan 3D membolehkan struktur kekisi untuk disesuaikan mengikut jenis penapis dan kegunaannya sebagai penapis cakera dengan lapisan sel unit kekisi berulang sebagai penapis jaringan. Sistem penapisan aliran bendalir kerap digunakan dengan bantuan sistem mengepaman. Bagi membolehkan cecair mengalir sehingga lokasi yang diingini, tekanan cecair yang tinggi diperlukan, dengan itu ianya memberi kesan penggunaan kuasa. Penurunan tekanan berlaku selepas cecair melepasi penapis dan menyebabkan lebih banyak tekanan diperlukan untuk aliran bendalir. Oleh itu, dengan menggunakan struktur jaringan kekisi dalam penapis air jenis cakera, ia dipercayai dapat mengurangkan penurunan tekanan aliran bendalir. Tujuan projek ini adalah untuk merekabentuk penapis air jenis cakera menggunakan teknik kekisi jaringan struktur dan menganalisis kecekapan penapis berbanding penapis cakera semasa berdasarkan simulasi. Sebanyak tiga sel unit dengan bentuk yang berbeza dengan dimensi kurang 3 mm dari tepi ke tepi, lalu diulang cetak menjadi corak hingga mendapat 50 mm diamensi besar cakera penapis. Mewujudkan model 3D untuk penapis cakera semasa, dengan dimensi yang berada dalam jarak struktur kekisi. Computasi Bendalir Dinamik (CFD) digunakan untuk menilai semua penapis dari segi penurunan tekanan dan halaju aliran bendalir. Selain itu, Analisis Elemen Terhingga (FEA) akan dilakukan untuk menganggarkan kekuatan struktur penapis. Berdasarkan kajian ini, keputusan akhir menunjukkan bahawa penapis cakera dengan struktur jaringan kekisi mempunyai lebih rendah nilai penurunan tekanan dan kelajuan berbanding penapis cakera biasa. Di masa hadapan, kajian ini membolehkan Malaysia mencipta penapis lebih baik untuk industri kerana proses penapisan adalah proses yang digunakan secara tidak langsung di dalam industry lain, lantaran itu, ia memberi kebaikan bukan pada satu pihak sahaja.

ABSTRACT

While aiming for Industry Revolution (IR) 4.0, the non-stochastic lattice structure is widely used in a variety of application including biomedical implants and heat exchangers. However, in filtration application, the use of the lattice structure is still new. In addition, the use of additive manufacturing allows the lattice structure to be customized according to the type of filter and is intended to use as a disc filter with a layer of repeated lattice unit cell as a filter mesh. Filtration application for fluid flow frequently uses with the help of the pumping system. In order for the fluid to flow until its destined location, high pressure of the fluid is needed, thus its effect the power consumption use. Pressure drop occurs after fluid passed a filter and resulted in more pressure needed for the fluid flow. Thus, by using a lattice mesh structure in disc type water filter, it is believed that it can minimize the pressure drop of the fluid flow. This project aims to design a disc-type water filter using a lattice mesh structure and to analyse the efficiency of the filter compared to the current disc filter based on computational simulation. A total of three-unit cells with different shape approximately with less than 3 mm edge to edge dimension is designed to be pattern into 50 mm disc-filter. Creating the 3D model for the current disc filter, with a dimension that is within range of the lattice structure. Computational Fluid Dynamic (CFD) is used to evaluate all filters in term of pressure drop and the velocity of the fluid flow. On the other hands, Finite Element Analysis (FEA) will be done to estimate the structural strength of the filter. Based on this study, the outcome shows filter discs with lattice mesh structure provided a lower pressure drop and velocity drop compared to conventional disc filter. In future, this study may help Malaysia in developing better filtration industries as filtration is an indirect process that occurs in other industry, it will not only benefit one side of the industry.

DEDICATION

For

my late father, Mohd Yazid Bin Selamat, may you rest in peace there, my mother, Asmunita Binti Musa, for moral support and encouragement, my aunt, Masdalina Binti Selamat & Siti Warda Binti Selamat, for supporting me with my dream, my sweet and lovely litter brother and sisters, Alif Syafiee, Nusrah Husna, Siti Aishah, & Allysha Khadijah for listening to all my complaint and make me smile, all my girls, Amyliana, Iffah, Salbiyah, Nuraliana, Najiha, Amirah, & Hazera, for helping each other during the process of making this project, Thank you and I love you so much May Allah bless all of us.

ACKNOWLEDGEMENT

illahirrahmanirrahim

In the name of Allah, the most merciful, with the highest praise to Allah that I manage to complete this final year project without any difficulty.

First and foremost, in completing this project, I had to take the help and guideline of some respected person, who deserve this greatest gratitude. I would like to show gratitude to En. Hazman Bin Hasib, the supervisors for valuable guidance and advice. He inspired greatly to work in this project. His willingness to motivate me contributed tremendously to this product development. I also would like to thank him for showing some examples related to the topic of this product.

Also, an honourable mention goes to the authors' families and friends for their understanding and support us in completing this project. Without their help for particular, I would face many difficulties and obstacles while doing this project. Lastly, I would like to thank those who directly or indirectly helping us to complete this project.

TABLE OF CONTENTS

		Pages
ABST	RAK	i
ABSTE	RACT	ii
DEDIC	CATION	iii
ACKN	OWLEDGEMENT	iv
TABLE	E OF CONTENTS	v
LIST C	OF TABLES	viii
LIST C	OF FIGURES	ix
LIST C	FABBREVIATIONS	xiii
LIST C	OF SYMBOLS	xiv
LIST O	OF APPENDICES	XV
СНАР	TER 1: INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	4
1.3	Objective	4
1.4	Scope of Project	5
1.5	Significant of Project	5
CHAP	TER 2: LITERATURE REVIEW	6
2.1	Filtration Industries	6
2.1	1.1 The Function of Filter	7
2.1	1.2 Disc-type water filter	8
2.1	1.3 Woven wire mesh disc filter	8

2.	1.4	Perforated disc filter	11
2.2	Lat	tice Structure	14
2.2	2.1	Cell topology	14
2.2	2.2.	Cell shape and size	15
2.2	2.3	Lattice structure in the application	17
2.3	Cor	nputer-Aided Engineering	18
2.2	3.1	Computational Fluid Dynamics	18
	2.3.1	1 Use of CFD in study simulation	19
2.3	3.2	Finite Element Analysis	22
	2.3.2	1 FEA in another research	22
2.4	Ado	litive Manufacturing	25
2.4	4.1	The development of additive manufacturing in Industry 4.0	25
2.4	4.2	Filtration against AM	26
CHAP'	TER	3: METHODOLOGY	28
3.1	Pro	ject Overview	28
3.2	Des	igning Disc-Type Water Filter	29
3.3	3D	Modelling of Conventional Filter	34
3.3	3.1	Woven Wire Disc Filter	34
3.3	3.2	Perforated Disc Filter	35
3.4	Cor	nputer-Aided Engineering	36
3.4	4.1	Computation Fluid Dynamic	36
3.4	4.2	Finite Element Analysis	41
3.5	Ana	lyzing Data	44
3.5	5.1	Pressure Drop	44
3.5	5.2	Velocity Drop	45

CHAP	IAPTER 4: RESULTS AND DISCUSSION		
4.1	Design of Filter		46
4.2	Co	mputational Fluid Dynamic simulation.	48
4.2	2.1	Pressure Drop Analysis	48
4.2	2.2	Velocity Drop Analysis	58
4.3	Fin	ite Element Analysis	64
4.3	3.1	Stress of the disc filter	64
4.3	3.2	Strain of the disc filter	66
4.3	3.3	Factor of Safety	69
4.4	Inte	erpretation of Finding	70
CHAP	ГER	5: CONCLUSION AND RECOMMENDATION	73
5.1	Lat	ttice Disc Filter Versus Conventional Filter	73
5.2	Sustainable Design and Development 7		74
5.3	Life Long learning		74
5.4	Fut	ture Recommendation	76
REFEF	REFERENCES 7		

APPENDICES

82

1.

LIST OF TABLES

Table	Title	Page
3.1	Strut size of structure	30
3.2	Details design of lattice disc	31
3.3	The Characteristic of Woven Wire 3D Modelling	34
3.4	Characteristic of Perforated Disc Filter 3D Modelling	35
3.5	Set up of the simulation boundary	38
4.1	Pressure Drop of Disc Filter at Inlet Velocity 1 m/s	48
4.2	Maximum and minimum value of total pressure in disc filter	55
4.3	Maximum and Minimum value of velocity for each type of filter	64
4.4	Maximum Stress of Disc Filters	64
4.5	Minimum Stress of Disc Filters	65
4.6	Maximum Strain of Disc Filters	67
4.7	Minimum Strain of Disc Filters	67
4.8	Factor of Safety for Disc Filter	69

LIST OF FIGURES

Figure	Title	Page
1.1	Perforated Disc-Type Filter	2
1.2	Woven Wire Mesh Filter Disc	2
2.1	Separating Particle Using Filter Medium, (Sutherland, 2008)	7
2.2	From left: Plain Weave, Twill Weave, Plain Dutch Weave (Sutherland, 2008)	9
2.3	From left: Dutch Twill Weave, Reverse Plain Dutch Twill and Dutch Twill Weave (Sutherland 2008)	9
2.4	Single mesh dimension, (Sutherland,2008)	9
2.5	Mesh dimension, (P. Nicholas, 1998)	11
2.6	Type of hole commonly use in perforated plate, (Sutherland, 2008)	12
2.7	Arrangement and pitch of holes according to letter T-U-Z-M	12
2.8	Round hole with 60 degree staggered	13
2.9	Round hole with 45 degree staggered	13
2.10	Unit cells with square cross-section strut, from left: rhombic dodecahedron, hexagon, and octahedron (Hasib et al,2015)	15
2.11	1.8 mm lattice unit cell from edge to edge, (Hasib et al., 2015)	15
2.12	Cell unit with octahedral structure in circular strut (Wang et al., 2013)	16
2.13	Patterned unit cell with different strut diameter (Brøtan et al., 2016)	16
2.14	Rhombic dodecahedron with different angle orientation (Brøtan et al., 2016)	17
2.15	Cubic volumes of three foam samples used for CFD computing (Ranut et al., 2014)	19
2.16	Porous medium-pure fluid-flow coupling interface (Gao et al., 2019)	20
0.17	Surface mesh description for (a) the 30 PPI sample, and (b) the 10	20
2.17	PPI sample (Ranut, et al., 2014)	20
2.18	For (a) 30 PPI, (b) 20 PPI and (c) 10 PPI foam, flow streamlines at Re = 10 (Ranut et al., 2014)	20

Figure	Title	Page
2.19	CFD – DEM coupling flow chart (Qian et al., 2014)	22
2.20	Procedure for cell optimization	23
2.21	Developed model FEA and documenting the result (Maliaris et al., 2016)	24
2.22	Finite element simulation, where the material velocity was shown by the colour scale (Hawreliak et al., 2016)	24
3.1	Project flowchart	29
3.2	Face Centre Cubic (FCC) Unit Cell	30
3.3	Body Centre Cubic (BCC) Unit Cell	30
3.4	Cubic Unit Cell	30
3.5	Woven-wire disc in 3D modelling	34
3.6	Details design on Woven wire Disc	35
3.7	Details on Perforated Disc	36
3.8	Partial hollow cylinder dimension for fluid flow simulation	37
3.9	Section view of partial hollow cylinder with dimension	37
3.10	Section view assembly of lid and filter disc	38
3.11	Lid Section view	39
3.12	Plane Insertion for Point	39
3.13	Insertion of Point on the plane	40
3.14	Clearer naming of the Point	40
3.15	SolidWorks Flow Simulation Setting	41
3.16	Exporting SolidWorks Flow Simulation Result to SolidWorks Simulation	42
3.17	Setting of SolidWorks Simulation for FEA analysis	42
3.18	Fluid Pressure Effect	43
3.19	Fixed Geometry	43
3.20	Example of Pressure Drop Calculation	44
3.21	Example of Velocity Drop Calculation	45
4.1	Conventional Disc Filter; (a) Woven-wire Disc (b) Perforated disc	47

1.

Figure	Title	Page
4.2	Lattice disc filter; (a) Rhombic-lattice disc (b) Kagome-lattice disc	47
4.2	(c) Octet-truss-lattice disc	47
4.3	Actual Pressure Drop of Disc Filter	50
4.4	Pressure drop of Disc Filter at 1 m/s	51
4.5	Pressure drop of Disc Filter at 3 m/s	51
4.6	Pressure drop of Disc Filter at 6 m/s	51
4.7	Pressure drop of Disc Filter at 9 m/s	52
4.8	Pressure drop of Disc Filter at 12 m/s	52
4.9	Pressure Drop of Disc Filter Between Point C1 and C2	53
4.10	Pressure Drop of Disc Filter Between Point C1 and C3	54
4.11	Pressure Drop of Disc Filter Between Point C1 and C4	54
4.12	Pressure Drop of Disc Filter Between Point C1 and C5	55
4.13	Contour for Woven Disc at 1 m/s	56
4.14	Contour for Perforated Disc at 6 m/s	56
4.15	Contour for Rhombic Disc at 12 m/s	57
4.16	Contour for Octet Disc at 6 m/s	57
4.17	Contour for Kagome Disc at 12 m/s	57
4.18	Velocity Drop of Disc Filter with Different Velocity	58
4.19	Velocity drop between Disc-Filter at 1 m/s	59
4.20	Velocity drop between Disc-Filter at 3 m/s	60
4.21	Velocity drop between Disc-Filter at 6 m/s	60
4.22	Velocity drop between Disc-Filter at 9 m/s	60
4.23	Velocity drop between Disc-Filter at 12 m/s	61
4.24	Velocity Drop of Disc Filter Between C1 and C2	62
4.25	Velocity Drop of Disc Filter Between C1 and C3	62
4.26	Velocity Drop of Disc Filter Between C1 and C4	63
4.27	Velocity Drop of Disc Filter Between C1 and C5	63
4.28	Stress of Kagome-lattice Disc Filter at 12 m/s	65
4.29	Stress of Rhombic-lattice Disc Filter at 12 m/s	66
4.30	Stress of Octet-truss-lattice Disc Filter at 12 m/s	66
4.31	Strain of the Octet-truss-lattice disc at 12 m/s	68
4.32	Strain of the Rhombic-lattice disc at 12 m/s	68

1.

Figure	Title	Page
4.33	Strain of the Kagome-lattice disc at 12 m/s	68
4.34	Safety factor of Disc Filter	69
4.35	Total Average Pressure Drop	71
4.36	Total Average Velocity Drop	71

LIST OF ABBREVIATIONS

1

Abbreviations		Definition	
3D	-	Three Dimension	
ABS	-	Acrylonitrile Butadiene Styrene	
AM	-	Additive Manufacturing	
CAD	-	Computer-Aided Design	
CAE		Computer-Aided Engineering	
CFD		Computational Fluid Dynamic	
DFMA	-	Design for Assembly and Manufacturing	
DEM	-	Discrete Element System Model	
FDM	. – 1	Fused Deposition Modelling	
FGM		Functionally Graded Material	
FEA	-	Finite Element Analysis	
EBM	е <u>,</u>	Electron Beam Melting	
HVAC	-	Heating, Ventilation and Air Conditioning	
KD	-	Kagome-lattice Disc	
MBD	-	Multibody Dynamic	
OD	a.	Octet-truss-lattice Disc	
PD	-	Perforated Disc	
RD	-	Rhombic-lattice Disc	
SLM	-	Selective Laser Melting	
WD	-	Woven-wire Disc	

xiii

LIST OF SYMBOLS

Symbols

Definition

1

μm	:	micrometre
cm	:	centimetre
in	:	inch
L/min	:	Litre per minute
m/s	:	Meter per second
m	:	meter
mm	:	millimetre
MPa	:	Mega Pascal
Pa	:	Pascal
TWh	:	Tera watt-hour

xiv

LIST OF APPENDICES

Appendix	Title	Page
А	Gantt Chart of Final Year Project 1	82
В	Gantt Chart of Final Year Project 2	83
С	Lid 1 Drawing	84
D	Lid 1 Drawing	85
Е	Lid 1 Drawing	86
F	Woven-wire Disc Filter	87
G	Perforated Disc Filter	88
Н	Lattice Unit Cell Rhombic	89
Ι	Rhombic-lattice Disc Filter	90
J	Lattice Unit Cell Kagome	91
K	Kagome-lattice Disc Filter	92
L	Lattice Unit Cell Octet-truss	93
М	Octet-truss-lattice Disc Filter	94
Ν	Contour for Pressure	95
0	Contour for Velocity	97
Р	Flow Trajectories	99
Q	The Stress of the Disc Filter	100
R	The Strain of the Disc Filter	102
S	Displacement of the Disc Filter	104
Т	Factor of Safety for Disc Filter	106

CHAPTER 1

INTRODUCTION

1.1 Background

According to Oxford Leaner's Dictionaries, the lattice is characterized as a structure made of wood or metal strips that cross over each other with spaces shaped like a diamond between them, used as a fence with any structure or pattern for example, while mesh is a material made of plastic rope or wire strings that are twisted like a net. A filter is characterized as a device that contains paper, sand, chemicals, and much more that passes through a liquid or gas to remove any unwanted materials.

Another study stated filter is a device used to separate one substance from another (Sutherland, 2008). For the filter to function properly, it required placing of filter media in the fluid flow to block the unwanted solid particles. Then, the filter turns into any contrivance that is capable to maintain the filter medium in an exceptional way to attain the function of the filter process.

The filter is put in the fluid flow of any application such as the kitchen countertop water filter to the comprehensive wastewater treatment plants or from the polished ultra-filter membrane to the rough tipping pan filter of a mineral processing job, not to mention the hydraulic control system (Sutherland, 2008). Thus, these shows that filter had many uses not only in human daily life but industries also especially for the process industry, which fluid is pumped under high pressure in the process. As fluid flows through the filter, its velocity is decreasing due to the resistance at the filter medium itself, which also lead to the pressure drop of the fluid compared from the initial pressure pumped. Therefore more power is needed to ensure the fluid reaches its destination (Vijayakumar et. al, 2013).

There are many types of filter that had to evolve in the industry to satisfy customers need. For disc-type water filter itself, there are perforated and woven-wire filter as shown in Figure 1.1 and Figure 1.2. Traditionally, filter disc is manufactured using perforated plates, mesh and wedge wire cum welding, cutting, rolling, and punching as the subtractive process (Hasib, 2016). Each of these filters has its aperture size, open area and mesh either for perforated filter or woven wire filter in additional of various of diameter for woven-mesh type (Sutherland, 2008).

Figure 1.1: Perforated Disc-Type Filter

Figure 1.2: Woven Wire Mesh Filter Disc

In order to fabricate a single disc filter, fifteen process steps are needed appropriately which includes designing pattern in Computer-Aided Design (CAD), rolling, welding, flange and many more (Croft Filter, 2014). These steps rather need a lot of time. As the technology reaching to industry 4.0, additive manufacturing or 3D printing also being introduced not only for prototyping but as a final product itself. At the beginning of AM technology, the product is produced by plastic material from cups and saucers to a facial reconstruction for a victim of a road accident. Within years, the development of complex metal component had made metal additive manufacturing to recognise proportionally to the advancement of technology potential (Burns, 2014).

A recent study had run metal additive manufacturing as a process to develop filter by using Selective Laser Melting (SLM) and Electron Beam Melting (EBM). By using SLM, the complex products were produced by fusing metal powder to create the structure depending on the 3D CAD data (Burns et. al, 2019). In the EBM process, the high power electron beam was used in powdered based direct metal fabrication under vacuum inflated temperature (Hasib et. al, 2015). Nonetheless, using additive manufacturing need to consider the use of CAD software as the base for designing the filter either in terms of the struct of structure, open area, or aperture size. The structure of the design needs to be designed accordingly to ensure the filter can work properly.

Generally, Metal foam is a cellular structure of solid metals that forms voids known as pores. The metal form can also be classified into two major categories, stochastic and non-stochastic (Hasib et. al, 2015). Stochastic means random, as in stochastic structure defined as a random and variety of shape and size of a cell. Non-stochastic geometries can be defined as a periodic lattice structure with repeating the shape and size of the cell. The lattice structure or cellular structure consists of a number of connected members or tessellated unit cells forming a complex structural network (Brackett et. al, 2014). Therefore, in this project student will design a disc-type water filter based on the lattice mesh that can be used in additive manufacturing fabrication.

1.2 Problem Statement

As the filter industries are striking for a better improvement to achieve IR 4.0, filtration industries also need to be more innovative. The traditional method used to manufacture a disctype filter is considered as a time consuming because there are many other processes involved in making a single filter (Croft Filter,2014). AM technology is designed to produce objects with mechanical properties comparable to those of bulk materials and to save considerable time by eliminating or significantly reducing post-processing steps (Yadroitsev et. al, 2009). According to (Vijayakumar et al., 2013) European Commission recorded that pumps in process industries as one of the largest users of electricity which consume 160 Tera Watt hours (TWh), and it also stated that 13% of electrical energy used by pumps and pumping system in the United Kingdom. Based on the data, the filter also plays an important role in industries whereas fluid is pumped under high pressure in filtration process which effect the power consumption in order to let the fluid flow reach its designated place. It is believed that recent developments in the manufacture of additives can also be used to print specific lattice structures from a variety of materials at reasonable cost (Cohen et al., 2019). To reduce the pressure developed, a better design of the filter which can be customised is needed.

1.3 Objective

The objectives of this study are as follows

- 1. To design the disc-type filter by using SolidWorks
- 2. To evaluate the fluid characteristics of the disc type water filter using Computational Fluid Dynamic (CFD) using SolidWorks Flow Simulation
- 3. To analyse structural characteristics of the disc-type water filter by using Finite Element Analysis (FEA) by SolidWorks Simulation

1.4 Scope of Project

The scope of the project is to design a disc-type water filter base on three structure which are rhombic, kagome and octet-truss. The material used for simulation purpose is 316L stainless steel for all design. This project will be not fabricated into a prototype due to Movement Control Order which starts in March 2020. However, to accomplished the design into reality, it can only be done by using Additive Manufacturing, as the design was complex and need extra precision compared to the current disc-type filter.

1.5 Significant of Project

Base on this project, it is believed that designing a customize disc-type filter using lattice structure can help in reducing the pressure used in the pumping system. Furthermore, fabrication of disc-type filter by additive manufacturing will not set a limitation in the designing stage, it will also save time on the process. Therefore, customers satisfaction can be achieved without paying for the non-value-added process.