

IMPLEMENTATION OF FIRST IN FIRST OUT SYSTEM IN SUB-ASSEMBLY COMPONENTS IN CASTING INDUSTRY

Submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering

(Hons.)

by

LIM YEE SHING B051610025 960718-10-6372

FACULTY OF MANUFACTURING ENGINEERING 2020

ale	ALATEL			-	
	-	<u>]</u> ;			N.
dia.	=		2	10	M
上	ليسيا	کل	ڪنيد	سيتي نيھ	ينور

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: IMPLEMENTATION OF FIRST IN FIRST OUT SYSTEM IN SUB-ASSEMBLY COMPONENTS IN CASTING INDUSTRY

Sesi Pengajian: 2019/2020 Semester 2

Saya LIM YEE SHING (960718-10-6372)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

D (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

√ TIDAK TERHAD

Alamat Tetap: 1,LENGKUK RHU2/KS6, BANDAR BOTANIC, 41200 KLANG, SELANGOR.

Tarikh: 26.08.2020

Disahkan oleh:

ASSOC, PLOE TS, DR, EFFENDI BIN MOHAMA Cop Rasmi Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal, Melaka

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Implementation of First In First Out system in Sub-assembly Components in Casting Industry" is the result of my own research except as cited in references.

Signature Author's Name Date : LIM YEE SHING : 26 AUGUST 2020

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

.....

(Associate Prof. Ts./Dr. Effendi bin Mohamad)

ASSOC, PROF. TS. DR. EFFENDI BIN MOHAMAD Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal, Melaka

ABSTRAK

Menurut para ahli dalam bidang Lean, terdapat tujuh waste termasuk penghasilan berlebihan, inventori, pengangkutan, proses, kerja ulang, gerakan menunggu dan gerakan yang tidak perlu. Dalam penyelidikan, terdapat dua waste utama yang terlibat iaitu waste inventori dan waste pengangkutan. Masalah yang dihadapi oleh syarikat adalah kapasiti penyimpanan yang tidak mencukupi dan masa bergerak yang tinggi dalam komponen subassembly. Pengeluaran Lean (LM) adalah pendekatan biasa yang digunakan untuk menghapuskan waste. Sebuah syarikat pemutus perkakasan pintu di Melaka telah melaksanakan reka bentuk First In First Out (FIFO) yang dilaksanakan sebagai cara penyelesaian utama untuk meningkatkan kapasiti penyimpanan dan mengurangkan masa pergerakan komponen. Alat lean seperti gambar rajah Ishikawa dan 5S dilaksanakan untuk membantu sistem FIFO. Objektif penyelidikan adalah untuk mengkaji sistem semasa yang berlaku di gudang, mereka sistem FIFO yang baru dan mengesahkan sistem FIFO. Kajian ini memberi tumpuan kepada komponen sub-assembly di kawasan gudang tertutup. Sistem semasa dikaji dengan menggunakan metodologi seperti pemerhatian, sesi brainstorming, wawancara separa berstruktur dan merujuk kepada sumber sekunder. Sistem FIFO dicadangkan dengan membuat perancangan semula di gudang, alat reka bentuk termasuk Morphologi Chart, concept screening dan concept scoring. Standard Operating Procedure (SOP) baharu telah dicipta. Pengesahan dan sistem FIFO boleh dilakukan dengan membuat perbandingan sebelum dan selepas FIFO system dijalankan. Dengan melaksanakan sistem FIFO, kapasiti storan dijangka meningkat dan masa pengerakan komponen sub-assembly dapat dikurangkan.

ABSTRACT

According to lean experts, there are seven waste including overproduction, inventory, transport, process, rework, waiting and unnecessary motion. In the research, there are two major wastes involved which is the inventory waste and transport waste. The problem faced by the company is insufficient storing capacity and high moving time of sub-assembly components. Lean Manufacturing (LM) is the common approach applied to eliminate waste. A door hardware casting company in Melaka has implemented First In First Out (FIFO) design as the main solution to increase storage capacity and reduce the moving time of subassembly components. Lean tools such as the Ishikawa diagram and 5S are implemented to aid the FIFO system. The objectives of the research are to study the current system in the warehouse, to design the FIFO system in the warehouse then to implement FIFO system in the warehouse. This study focused on the sub-assembly components in the indoor warehouse area. The situation in the warehouse before implementing FIFO was studied by using methodology such as observation, brainstorming sessions, semi-structured interview and referring to secondary sources. The FIFO system was proposed by redesigning the warehouse, the design tools included are Morphological chart, concept screening and concept scoring. New Standard Operating Procedure (SOP) is proposed. The verification and validation of the FIFO system were done by making a comparison before and after implementing FIFO system. By implementing a FIFO system, the storage capacity can be increased and the moving time of sub-assembly components can be reduced. Increased storage capacity and reduced components moving time will result in reduction of inventory waste and transport waste.

DEDICATION

Only

my beloved father, Lim Soon Kok

my appreciated mother, Ng Soh Keng

for giving me moral support, money, cooperation, encouragement and also understandings Thank You So Much & Love You All Forever

iii

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my respected supervisor, Associate Prof. Ts. Dr. Effendi bin Mohamad for the great mentoring that was given to me throughout the project. He has contributed beneficent ideas and suggestions to make this research project a favourable result.

Besides, I would like to express my gratitude to the Dormakaba Production Malaysia Sdn. Bhd., Mr. Aswan, the department manager. Throughout his guidance and help, I can gather all the information required. I would also like to thank the section manager, the technicians, the operators, the engineers for their kind supervision, advice and guidance as well as exposing me with meaningful experiences throughout the study.

Lastly, I would like to give a special thanks to my appreciated seniors and friends who gave me untold motivation and cooperation in completing this report especially to, Mohammad Afif bin Embok Resa for the nonstop encouragement, Kee Chung Terk for the gainful scientific advice, Wong Sook Ee for the countless moral support. They had given their crucial suggestions and critics throughout my research. Thanks for the great friendship.

In short, I would like to thank everyone who has contributed to this Final Year Project report including the panels, as well as expressing my apology if any inconvenience has been done.

iv

TABLE OF CONTENT

1

Abstı	ak		i
Abstı	act		ii
Dedi	cation		iii
Ackn	owledge	ement	iv
Table	e of Cont	tents	v
List o	of Tables	3	ix
List o	of Figure	2S	xi
List o	of Abbre	viations	xiv
List o	of Symbo	ols	XV
CHA	PTER 1	1: INTRODUCTION	
1.1	Backg	ground of Study	1
1.2	Proble	em Statement	2
1.3	Objec	tives	4
1.4	Scope		4
1.5	Impor	tance of Study	5
1.6	Organ	nisation of Report	6
CHA	PTER	2: LITERATURE REVIEW	
2.1	FIFO		7
	2.1.1	Comparison of FIFO and LIFO	8
2.2	Warel	house Activities	9
	2.2.1	Facilities design	10
	2.2.2	Warehouse design	12
2.3	Throu	aghput time reduction	15
2.4	Lean	Manufacturing	16
	2.4.1	Value Added	16
	2.4.2	Non-Value Added	17
	2.4.3	Ishikawa diagram	18

	2.4.4	58	19
2.5	Design	n Process	20
	2.5.1	Design Planning	20
	2.5.2	Morphological Chart	21
	2.5.3	Concept Screening	22
	2.5.4	Concept Scoring	25
	2.5.5	Design Drawing	25
2.6	Resear	ch Methodology	26
	2.6.1	Objective of research	26
	2.6.2	Types of research	27
	2.6.3	Data collection Method	28
		2.6.3.1 Qualitative research	29
		2.6.3.2 Quantitative research	30
		2.6.3.3 Combination of Quantitative and Qualitative research	31

CHAPTER 3: METHODOLOGY

3.1	Relation	onship between Objectives and Methodology	31
3.2	Projec	t Flow Chart	33
3.3	Object	ive 1: To study and analyse the current system in the warehouse	34
	3.3.1	Define the problem	34
		a. Observation	35
		b. Brainstorming	35
		c. Semi-structured interview	35
		d. Data collection	36
		e. Secondary sources	36
	3.3.2	Analyse the problem	37
		a. Ishikawa diagram	37
	3.3.3	Identify the space requirements	38
		a. Analyse the space requirements	38
3.4	Object	tive 2: To design and develop FIFO system in the warehouse	39
	3.4.1	Evaluate the alternatives	39
		a. 5S	39
		b. Morphological Chart	40
	3.4.2	Choose the preferred design	40

vi

		a. Concept Screening	41
		b. Concept Scoring	41
		c. Design Drawing	41
3.5	Objec	tive 3: To implement FIFO system in the warehouse	42
	3.5.1	Implement the design	42
		a. Verification of FIFO design	42
		b. Application of labelling	43
		c. Arrangement according to FIFO system	43
		d. SOP to maintain FIFO system	43
		e. Evaluate storage capacity	43
		f. Evaluate the moving time	43

CHAPTER 4: RESULT AND DISCUSSION

4.1	Object	ive 1: To study and analyse the current system in the warehouse	44
	4.1.1	Define the problem	44
		a. Observation	44
		b. Brainstorming	48
		c. Semi-structured interview	49
		d. Data collection	50
		e. Secondary sources	56
	4.1.2	Analyse the problem	57
		a. Ishikawa diagram	57
	4.1.3	Identify the space requirements	58
		a. Analyse the space requirements	58
4.2	Object	ive 2: To design and develop FIFO system in the warehouse	65
	4.2.1	Evaluate the alternatives	65
		a. 5S	65
		b. Morphological Chart	65
	4.2.2	Choose the preferred design	68
		a. Concept Screening	68
		b. Concept Scoring	70
		c. Design Drawing	71

vii

4.3	Objec	tive 3: To implement FIFO system in the warehouse	73
	4.3.1	Implement the design	73
		a. Verification of FIFO design	73
		b. Application of labelling	76
		c. Arrangement according to FIFO system	79
		d. SOP to maintain FIFO system	84
		e. Evaluate storage capacity	85
		f. Evaluate the moving time	86

92

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1	Conclusion	88
5.2	Recommendations	89
5.3	Sustainable Design and Development	90
5.4	Complexity	90
5.5	Lifelong Learning and Basic Entrepreneurship	91

REFERENCES

APPENDICES

LIST OF TABLES

1.

2.1	Description of FIFO	7
2.2	Differences of FIFO and LIFO	8
2.3	The activities involved in a warehouse	10
2.4	Procedures of warehouse design	12
2.5	Facilities planning process	13
2.6	Storage layout planning	14
2.7	Seven categories of wastes	17
2.8	The measurement required in the warehouse	17
2.9	Comparison of researchers using Ishikawa diagram	19
2.10	Description of 5S	19
2.11	Concept generation	20
2.12	Comparison of researchers using Morphological Chart	21
2.13	Example of score relative performance	23
2.14	Procedure of Concept Screening	24
2.15	Main objectives of research	27
2.16	Types of research	27
2.17	Methods for data collection	28
2.18	Types of qualitative research methodology	29
3.1	Relationship between Objectives and Methodology	32
3.2	Relationship between the stages in Objective 1 and Methodology	34
3.3	Format of Visiting Schedule to the casting company	35
3.4	Format of Schedule for brainstorming	35
3.5	Relationship between the stages in Objective 2 and Methodology	39
3.6	Description of 5S methodology	40
3.7	Relationship between Objective 3 and Methodology	42

4.1	Visiting Schedule to the casting company	45
4.2	Schedule of brainstorming sessions with supervisor	48
4.3	The results for interview from 10 respondents	50
4.4	Identification of main types of sub-assembly components	51
4.5	The dimension of FIFO rack	60
4.6	Dimension of trolley and pallet jack	61
4.7	Dimension of Inventory boxes	62
4.8	5S methodology used in arrangement of components	65
4.9	Morphological Chart of FIFO rack system	66
4.10	Variation of concepts	68
4.11	Concept Screening	69
4.12	Indication of ratings in concept screening	69
4.13	Concept Scoring	70
4.14	Indication of ratings and scores in concept scoring	70

х

LIST OF FIGURES

1

1.1	The current and plan storage capacity of the indoor warehouse area	3
1.2	The current and plan moving time of sub-assembly components	3
1.3	The Autocad drawing of the plan of the indoor assembly area	5
2.1	Typical warehouse functions and flows	9
2.2	Material storage layout by popularity	11
2.3	ABC layout	11
2.4	Manufacturing Throughput Time per Part (MTTP) Reduction Framework	15
2.5	Example of Ishikawa Diagram	18
2.6	Process of manufacturing design	20
2.7	Example of Morphological Chart	21
2.8	Example of Morphological Chart with diagram	22
2.9	Example of Concept Screening Matrix	23
2.10	Example of Concept Scoring	25
2.11	Research process in flow chart	26
2.12	Example of Data Calculation	30
3.1	Project Flowchart	33
3.2	Reference Book used in literature review	36
3.3	Online resource	37
3.4	Sample format of Ishikawa Diagram	37
4.1	Sub-assembly components blocking the transport pathway	46
4.2	No labelling on the inventory boxes	46
4.3	The label is not fixed on the inventory box	47
4.4	Two types of screw with minor difference	47
4.5	Semi-structured interview with the operators	49
4.6	Semi-structured interview with the workers in warehouse	49
4.7	The list of assembly components with the sub-assembly components	52

4.8	Daily shipping advice of the casting company	52
4.9	Excel format of the components daily load out quantity	53
4.10	Quantity counting of sub-assembly components	53
4.11	Components quantity per box	54
4.12	Calculation of total inventory boxes required for all the components	55
4.13	Calculation of inventory boxes for bearing housing for 3 days capacity	55
4.14	Calculation of inventory boxes for pressure disc for 3 days capacity	55
4.15	Calculation of inventory boxes for spring adjustment screw for 3 days	
	capacity	56
4.16	Ishikawa diagram to identify the root cause of insufficient storing capacity	57
4.17	Measuring tape	58
4.18	Plan of indoor warehouse	59
4.19	Dimension of warehouse	59
4.20	Proposal 1 horizontal arrangement	63
4.21	Proposal 2 vertical arrangement	64
4.22	FIFO system model	71
4.23	Side view of the FIFO rack	71
4.24	Front view of the FIFO rack	72
4.25	Isometric view of the FIFO rack	72
4.26	Proposal 1 of components arrangement	73
4.27	Proposal 2 of components arrangement	74
4.28	Representation of symbols given on the proposals	74
4.29	Validation of proposal by the workers	75
4.30	Verification of proposal 2 by the engineer	75
4.31	Label of the inventory boxes	76
4.32	Label placed on the inventory boxes	77
4.33	Labelling placed on the rack	77
4.34	Label of the component on the rack	78
4.35	Components labelling on the FIFO rack	78
4.36	Label design with the symbol representation	79
4.37	Arrangement of components on Rack 1	79
4.38	Arrangement of components on Rack 2	80
4.39	Arrangement of components on Rack 3	80
4.40	Arrangement of components on Rack 4	81

xii

4.41	FIFO arrangement according to Proposal 2 guide	81
4.42	Components arrangement according to Proposal 2	82
4.43	Transportation of components using Trolley	82
4.44	Final arrangement of components on FIFO rack	83
4.45	SOP of new FIFO system	84
4.46	Comparison of storage capacity before and after	86
4.47	Comparison of moving time before and after	87

xiii

LIST OF ABBREVIATIONS

1

LM		Lean Manufacturing
FIFO	-	First In First Out
DOSM	-	Department of Statistics Malaysia
LIFO	-	Last In First Out
WIP	-	Work in Process
ЛТ	-	Just in time
5S	`	Sort, Shine, Set in order, Standardize, Sustain
6M	-	Man, Machine, Method, Material, Measure, Mother nature
QLR	-	Qualitative research
QTR	-	Quantitative research
SOP	-	Standard Operating Procedure

xiv

LIST OF SYMBOLS

S % Second Percent

xv

CHAPTER 1 INTRODUCTION

There are few aspects highlighted in this chapter. The background of the study provides the user with vital information regarding the title. Current problems in the industry are identified. The objectives of the study project are stated to provide clear guidelines for the project which is within certain focus aspects. The advantages of the project are mentioned as well to highlight the importance of FIFO implementation.

1.1 Background of Study

According to the Malaysia Economic Performance Third Quarter 2018, the manufacturing sector is one of the sectors which beneficial in economic growth. Manufacturing sector contributes second highest for the consumption expenditure with 23%, which is above Agriculture, Construction, Mining and Quarrying (Department of Statistics Malaysia, 2019). The sub-sectors of manufacturing sector including electronic, electrical and optical products generate RM361.8 billion (28.4%) which contribute to the biggest amount of gross output according to the Annual Economics Statistics 2018 Manufacturing sector.

William (2015) mentioned that there are wastes in manufacturing sector and the wastes are the equipment, parts, space, materials and working time that are not required. The author mentioned that there are seven categories of manufacturing wastes including overproduction, inventory, transport, process, rework, waiting, unnecessary motion.

Virender *et al.* (2017) mentioned that there are lean strategies in Lean Manufacturing (LM) to eliminate waste. Waste is non-value added for industry and difficult to eliminate. Bill (2005) claimed that LM is manufacturing without the involvement of waste. The author

1

mentioned that LM is a production system that removes all wastes and applies continuous improvement to generate a perfect product.

Maarten *et al.* (2014) mentioned that the application of FIFO towards asset rotation is a common approach to ensure the stock is unloading based on its arrival time by prioritizing to load out the products that spent the most time in the warehouse. The author claimed that implementation of FIFO in warehouse management is one of the supply chain strategies to generate product management efficiently. According to Meinarini *et al.* (2018), FIFO application allows the incoming and outgoing goods process to be well managed and also easy and practical to be implemented. While Airline (2015) mentioned that the application of FIFO ensured that the inventory to be counted easily.

A case study is conveyed in a casting manufacturing company. The company manufactures many types of products including door control, automatic, movable wall, glass fittings products, and accessories. The main product includes door hardware. The main focus of the research study is in the warehouse by focusing on the loading and unloading processes of sub-assembly components. A FIFO design will be proposed and implemented aided by the lean tools.

1.2 Problem Statement

According to Rene *et al.* (2007), the inventory moving process is stated as the most labour-intensive and costly activity for every warehouse; the cost of inventory moving is predicted to be 55% of the total expenses in a warehouse operation. Bad performance in order picking can lead to unsatisfaction and high warehouse operational costs.

Based on the observation study and brainstorming sessions with the engineers, there is a problem such as insufficient storing space for all of the sub-assembly components in the warehouse. The problem of insufficient storing space causes the components are placed in an unorganized manner. Figure 1.1 shows the current and plan storage capacity of the indoor warehouse area. The current warehouse is capable to store only 85% of the sub-assembly components. This research is planned to achieve the goal of increasing in 5% of storage capacity, which is achieving 90% of storage capacity.

Figure 1.1: The current and plan storage capacity of the indoor warehouse area

There is also a problem such as there is no visual information on the sub-assembly components. Workers who are not familiar with the process are having difficulty to look for the sub-assembly components needed since there is no label on the components. Information such as components name and quantity are not provided.

Figure 1.2 shows that the current moving time of components is 140 seconds for loading, 121 seconds for unloading components. The expected result is to reduce 6% of the moving time during loading and unloading processes of sub-assembly components.

Figure 1.2: The current and plan moving time of sub-assembly components

Metal components will undergo the rusting process if they are left long periods in the storage. According to Talbot *et al.* (2018), iron and steel are applied widely as engineering metals. Rusting of the bare iron and steel on the surfaces is generally slower when in the air while comparing to in the water. In the air, they are more variable, which ranges from approximately 0 to more than 0.1 mm per annual. Therefore, it is important to apply FIFO to prevent the accumulation of old components. It is vital to know which item is the oldest and which is the latest. Items are required to be designed to sort accordingly from the oldest to the latest using the FIFO system.

1.3 Objectives

The objectives are as follows:

- (a) To study the current system in the warehouse
- (b) To design FIFO system in the warehouse
- (c) To implement the FIFO system in the warehouse

1.4 Scope

The study project involves the loading and unloading processes of sub-assembly components. The study only involves the sub-assembly components, it does not involve the finished product, which is the assembly components.

The solution is designed based on the FIFO system which the oldest sub-assembly components are used first rather than the latest sub-assembly components.

The area of research study focused on the indoor warehouse area. Figure 1.3 shows The Autocad drawing of the plan of the indoor assembly area. The indoor warehouse area is marked using a red-dotted line.

4

Figure 1.3: The Autocad drawing of the plan of the indoor assembly area

1.5 Importance of Study

There are few benefits can be obtained after the completion of the study. It is significant to propose FIFO to the inventory because it can reduce the lead time of components remain in the storage. The method ensures that the components will be loaded out accordingly from the oldest to the latest components. The components will be easily identified, such as the name, quantity and date of arrival of the components will be stated in the label. The components moving time will be reduced as the time taken to identify the accurate quantity of product will be reduced. The cost of inventory storage can be reduced as implementation of FIFO system can increase the storage capacity. The existing warehouse can be fully utilised without the need for developing a new warehouse. A new warehouse will be required only of the existing storage has maximum utilisation of space.