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ABSTRACT

This study focuses on the study of oscillatory flow at various drive ratios across a heat
exchanger by using CFD modelling. The primary goal of a heat exchanger is to exchange heat
between two fluids, hence the performance of the heat exchanger in terms of heat transfer is
significant. Fluid flow can be of either steady flow, where fluid exits the system after heat is
exchanged, or of oscillatory flow, where the fluid stays in the system oscillating back and
forth periodically in a heat exchanger. The geometry model for the heat exchanger was
modelled using Ansys Design Modeler. Grid independency test was conducted to determine
the appropriate grid size to be used when solving the model. Four models of oscillatory flow
of different DR were solved using Ansys Fluent. The results obtained was compared with
theoretical calculations to determine the validity. Several contour plots of velocity, vorticity,
temperature, and pressure were plotted. Heat transfer performance was analyzed by obtaining
the surface heat transfer coefficient at the tubes and thus obtaining the heat transfer rates.
Higher drive ratio, DR, provides greater heat transfer within the heat exchanger and the tube
banks due to the turbulence generation. Since oscillatory flow has yet to have conclusive
equations to model the heat transfer, steady flow heat transfer equations are used.
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ABSTRAK

Kajian ini memberi fokus terhadap ujikaji aliran berayun merentasi penukar haba pada nisbah
pemacu yang berbeza dengan menggunakan kaedah pemodelan dinamik aliran bendalir.
Matlamat utama penukar haba adalah untuk untuk memindahkan haba di antara dua bendalir.
Oleh itu, prestasi penukar haba dari segi pemindahan haba adalah penting. Aliran bendalir
boleh diklasifikasikan dalam dua bentuk iaitu aliran stabil, di mana bendalir keluar daripada
sistem setelah pertukaran haba, atau aliran barayun, di mana bendalir berada di dalam sistem
sambil berayun ulang-alik secara berkala di dalam penukar haba. Model geometri penukar
haba telah dimodelkan menggunakan Ansys Design Modeler. Ujian kebebasan grid telah
dilakukan untuk menentukan ukuran grid yang sesuai dalam menyelesaikan model. Empat
model aliran berayun pada nisbah pemacu yang berbeza telah di diselesaikan menggunakan
Ansys Fluent. Hasil yang diperolehi telah dibandingkan dengan pengiraan teori untuk
menentukankan kesahihan. Beberapa plot kontur halaju, vortisiti, suhu, dan tekanan telah
diplot. Prestasi penukar haba telah dianalisis dengan mendapatkan pekali permindahan haba
permukaan pada tiub dan mendapatkan kadar pemindahan haba. Nisbah pemacu yang lebih
tinggi memberikan pemindahan haba yang lebih besar diantara penukar haba dan susunan tiub
oleh sebab pergolakan yg dihasilkan. Disebabkan aliran berayun belum mempunyai
persamaan yang boleh memodelkan pemindahan haba dengan tepat, persamaan pemindahan
haba untuk aliran stabil telah digunakan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Heat exchangers are devices that allow the transfer of thermal energy between two or
more fluids of different temperatures. Cengel and Boles (2015) defined heat exchangers as a
device where two moving fluids exchange heat without mixing. Both heating and cooling
processes involve the use of heat exchangers. Heat exchangers are commonly used in
applications where heating and cooling of a fluid stream of concern and evaporation or
condensation of single- or multicomponent fluid streams (Shah & Sekulic, 2003). Other uses
of heat exchangers can be seen in room heating, refrigeration, air-conditioning etc. Heat
exchangers mainly work on lthe basic principle of convection (in each fluid) and conduction
(between the thin walls and the fluid). Therefore, selection of proper heat exchangers is vital
due to various factors that influence heat transfer rates depending on need of different

applications.

There are several ways to classify heat exchangers which include differentiating them
by their flow configuration, construction method, or the method at which they transfer heat. In
this study, crossflow heat exchanger is the main focus. Crossflow heat exchangers are defined
by the flow of fluid that is perpendicular to one another. This type of heat exchanger is further
classified into two different classifications, namely mixed and unmixed flow. The differences

between mixed and unmixed flow is that in mixed flow, the fluid is free to move in the



transverse direction while in unmixed flow, the presence of fins only allows the fluid to move

in the direction of the flow itself (Spakovszky, 2019).

In heat exchangers, tube banks are the most common type of configuration when it
comes to transferring heat. The arrangements of the tube banks are usually either in-line or
staggered with respect to the direction of flow. These tube banks are further classified based
on their crosswise and streamwise pitch-to-diameter ratio, wherein having a ratio smaller than
1.252 are referred to as compact, while having a ratio larger than 4 are considered to be
widely-spaced (Beale, 2011). In the case of internal flow in the tube banks, heat transfer
analysis can be calculated by analysing a single tube, and multiplying the results by the
amount of tubes present. However, for the case of external flow over tube banks, the tubes
will affect the flow pattern and turbulence across the pipe, therefore affecting heat transter to

and from the pipes.

Heat exchanger that operates under oscillatory flow is a crucial component of
thermoacoustic engines and coolers (Ilori, Jaworski, & Mao, 2018). The oscillating flow in
thermoacoustic systems allows the transfer of energy within its internal component to produce
acoustic power (engine) or to pump heat (cooler). Therefore, it is necessary to design an

optimum heat exchanger to have thermoacoustic engines with high performance.

In this project, oscillatory flow over tube banks will be studied with the aid of
Computational Fluid Dynamics (CFD) software such as ANSYS Fluent. The use of CFD will
allow for easier analysis of the oscillatory flow with the help of computer simulation. It also

eliminates the need for experimenting without compromising the accuracy of the results.



1.2 Problem statement

There are many different types of flows across tube banks. The general focus in this
study is the oscillatory flow of fluid motion across tube banks. Fluid in an oscillatory flow
moves in a manner in which it changes direction over time (including reverse motion). Some
observations on oscillatory flow can be seen in situations such as water flow in oceans, blood

circulation flow, and thermoacoustic engine.

There are many case studies as well as established researches that have been done
towards heat transfer and fluid dynamics of fluid across tube banks especially in the case on
steady one-directional flow. However, there are limited studies and literatures regarding
oscillatory motion of fluid on the same subject. Therefore, in this project, the oscillatory flow

of fluid across tube banks will be studied, simulated and recorded.

1.3 Objective
The objective of this project is:

1. To use CFD to model cross flow over tube banks.

o

To analyse fluid flow characteristics of oscillatory cross flow.

To analyse heat transfer characteristics of oscillatory cross flow.

(V8]



1.4

Scope of study

The scopes of this study are:

Limited to the use of CFD only.

Only using two dimensional (2D) models.

Focuses on oscillatory flow only.

Use of circular tubes as heat exchanger.



CHAPTER 2

LITERATURE REVIEW

In this chapter, detail discussion on the information and research that had been done on
the topic which is “CFD study of and oscillatory flow across heat exchangers™. Some of the
related terminology will be discussed in this section which includes flow characteristics, flows

over heat exchangers, performance of heat exchangers, etc.

2.1 Types of flow

In this section of the report, the types of flows that are present will be defined and

explained further in detail.

2.1.1 Internal flow

Internal flow is a fluid that flows through confining walls where the flow is guided
from a defined inlet and exits an outlet (Johnston, 1976). Cengel and Cimbala (2017) defined
internal flow if the fluid is bounded by solid surfaces. Fluid that flows in a duct where the
liquid is partially filling the duct and there is a free surface that is classified as open-channel
flow. Examples of this type of flow are fluid flow through a pipe, duct, or channel. An

example of this type of flow can be seen by flow of water in pipes.



2.1.2 External flow
External flow is defined as the motion of fluid around a body which is immersed in the
fluid medium (Polezhaev, 2011). Examples of external flow are flow of air around an aeroloil,

and flow of air around a moving car. Figure 2.1 shows an illustration of external flow.

Figure 2.1: [llustration of external flow (Cengel & Cimbala, 2017)

2.1.3 Steady flow vs unsteady flow

The flow of fluid can be classified into two different flow conditions, namely steady
flow and unsteady flow. Steady flow is the condition of flow when the fluid properties at any
point in the system exhibits no change with respect to time. These fluid properties include
temperature, density, pressure, velocity and ete. Unsteady flow or non-steady flow is a flow

condition where the fluid properties of the system depend on time.

2.1.4 Cross flow
Cross flow is the type of flow where one fluid flows through pipes or tubes while the
other fluid flows across the tubes in a perpendicular direction (Yoo, Kwon, & Kim, 2007).

These types of heat exchangers usually operate for heat transfer between a liquid and a gas

6




(Bengtson, 2019). Examples of the application of cross flow heat exchanger configuration can
be seen in car radiators and evaporator coil for air conditioning units. Figure 2.2 illustrates the

cross flow situation.

Figure 2.2: Illustration of cross flow

2.1.5 Oscillatory Flow

Oscillation can be defined as the forward and backward motion of a thing between two
locations or points. This motion can be periodic which means it repeats itself in a steady cycle.
Hence, oscillatory flow can be defined as a flow of a fluid moving back and forth in a regular
cycle between two positions. Two forms of oscillatory flow have been studied. The first type
is unidirectional oscillation about a mean pulsating flow which consists of two components,
the steady and unsteady components. An example of this type of flow is the flow of blood in
the arteries. The second type of oscillatory flow is reciprocating flows, which fully changes
direction in the reverse direction cyclically with zero mean velocity (Jalil, 2019). There are
various advantages to understanding oscillatory flows. Other examples of oscillatory flows are

- oscillation of the working fluid in thermoacoustics engines, and waves under the ocean.

In oscillatory flow, the velocity shape profile is dictated by the Womersley number.

Womersley number, Wo, is a dimensionless parameter used most commonly in biofluid
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mechanics and biofluid dynamics. It is named after John R. Womersley (1907 — 1958) for his
contributions towards blood flow in arteries. The Womersley number is usually denoted by o
and is represented in Eq. (1).

wp

a =1L
€l i

(1)

where « is the Womersley number, L¢ is the characteristic length (m), w is the angular
frequency of oscillation (rad/s), p is the density of the fluid (kg/m?), and x is the dynamics
viscosity of the fluid (N-s/m?). The Womersley number shows the ratio of transient inertia

force to the shear force.

Feldmann and Wagner (2012) reported that the velocity profiles of oscillating flow can
be in the shape of a parabola, M-profile or a flat profile with increasing frequency. Figure 2.3

shows the velocity profile at different Womersley number.

Aa ; , : e . AN
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Figure 2.3: Velocity profiles of oscillatory flow at different Womersly number
(Schoenmaker, 2017)




2.2 Flow over tube banks

In flow over tube banks, the fluid undergoes external flow. The tube banks act as an
obstacle that obstructs the flow of the fluid. In this sub-section, the flow characteristics of the
fluid in external flow will be discussed and explained such as no-slip condition, separation,

stagnation and etc.

2.2.1 Boundary layer

Formation of a boundary layer begins when the first layer of the fluid flow adjacent to
the surface is undergoing a no-slip condition. This motionless layer slows down the particles
of the next fluid layer due to friction between the particles of the neighbouring layer. This
process continues until a distance of & from the plate beyond which the free-stream velocity

remains unchanged. Figure 2.4 shows the development of boundary layer for different flow

regimes.
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Figure 2.4: Development of boundary layer for different flow regimes
(Cengel & Ghajar, 2015)

The boundary layer thickness, J, is typically defined by distance y from the surface at u =

0.99V. This imaginary line of u = 0.99) separates the flow into two regions: the boundary





