DESIGN AND DEVELOPMENT OF LARGE-SCALE SIZE 3D PRINTER

YEW SIN WEI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF LARGE-SCALE SIZE 3D PRINTER

YEW SIN WEI

This report is submitted in fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declared that this report entitled "Design and Development of Large-Scale Size 3D Printer" is the result of my own work except as cited in the references.

Signature	· <u>G</u> ins
Name	: YEW SIN WEI
Date	: 27/7/2020

APPROVAL

I have declared that I have read this project report entitled "Design and Development of Large-Scale Size 3D Printer" and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:
Supervisor's name	: Prof. Madya Ir.Ts.Dr. Mohd Rizal Alkahari
Date	: 27/7/2020

ABSTRACT

3D printing is an advanced technology for manufacturing complex parts, which cannot be produced by traditional technologies such as subtractive manufacturing processes. One of the common types of 3D printing process is fused deposition modelling. During 3D printing, the printhead module is driven by g-code to move on the x-y-z axis to build objects layer by layer. This concept is almost similar to subtractive manufacturing using Computer Numerical Controlled (CNC), where the cutting tool movement is also controlled by the gcode. However, most of the open source 3D printer is using Arduino and Arduino board is not reliable for heavy-duty industries. One of the popular control systems is called Mach3. Mach3 is not free software but is open to everyone for download on the website. Mach3 can control milling machines, lathes machine, plasma cutters and 3D printers; WAAM is a welding method and or also can be a part of an additive manufacturing process where the metal wire can serve as the same function as the plastic filament in 3D printing to continuous feed onto the building platform. In this project, a large-scale metal 3D printer is developed which is using Mach3 control system.

ABSTRAK

Percetakan 3D adalah teknologi canggih untuk menghasilkan bahagian kompleks, yang tidak dapat dibuat oleh teknologi tradisional seperti proses subtraktif. Jenis pencetakan 3D yang biasa adalah pemodelan pemendapan, di mana modul kepala percetakan didorong oleh g-code untuk bergerak pada paksi x-y-z untuk membina objek secara lapis-lapisan. Konsep ini hampir sama dengan CNC (subtraktif), di mana pergerakan alat pemotong juga dikawal oleh g-code; Walau bagaimanapun, kebanyakan pencetak 3D adalah asas Arduino tetapi papan Arduino kurang dipercayai untuk industri berat; Salah satu sistem kawalan popular dipanggil Mach3, software ini bukan percuma tetapi terbuka kepada semua orang untuk dimuat turun di laman web mereka. Mach3 boleh mengawal pelbagai mesin seperti plasma dan pencetak 3D; WAAM adalah kaedah kimpalan dan atau juga boleh menjadi sebahagian daripada proses pembuatan bahan tambahan di mana wayar logam dapat berfungsi sama seperti filamen plastik dalam percetakan 3D. wayar logam ini dapat dibekal secara berterusan ke atas platform pembinaan bahan. Tujuan penyelidikan ini adalah untuk membangunkan pencetak 3D logam berskala besar dan mengintegrasikannya dengan sistem kawalan Mach3.

ACKNOWLEDGEMENT

Firstly, I would like to express great gratitude for our Dean of Faculty of Mechanical Engineering for giving us an opportunity to expand our skills and knowledge when we are processing this project. Besides, I would like to show special thanks to my Final Year Project supervisors, Prof. Madya Ir.Ts.Dr. Mohd Rizal Alkahari and Dr Masjuri Bin Musa for giving us guidance and motivation when handling every aspect of this project. Next, grateful thank to every course mates of the Faculty of Mechanical Engineering for their cooperation by providing extra information and resources. Special thanks to UTeM short term grant funding for the financial support throughout this project. Lastly, I would like to thank the industry leaders by giving guidance, opinion and effort to accomplish the task requirement.

CONTENT

CHAPTER	CON	ITENT	PAGE
	SUP	ERVISOR'S DECLARATION	
	ABS	TRACT	i
	ACK	NOWLEDGEMENT	iii
	TAB	LE OF CONTENT	iv
	LIST	F OF TABLES	vii
	LIST	T OF FIGURES	ix
	LIST	COF APPENDICES	xii
	LIST	COF ABBREVIATIONS	xiii
	LIST	T OF SYMBOLS	XV
CHAPTER 1	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Objective	3
	1.4	Scope of Project	3
	1.5	General Methodology	4
CHAPTER 2	LITI	RATURE REVIEW	5
	2.1	What is 3D printing?	5
	2.1	Type of 3D printing process	6
	2.2	The advantages and disadvantages of 3D printing	14
	2.5	process	11
	2.4	Printing materials	16
	2.5	Hardware Requirement	18
	2.6	What is Mach3?	21
	2.7	Software Requirement	28

CHAPTER 3 METHODOLOGY

3.1	Introduc	ction	31
3.2	Benchmarking on Competitive Products		
3.3	House o	f Quality	34
3.4	Product	Design Specification (PDS)	36
3.5	Concept	Generation	37
	3.5.1	Morphological Chart	37
	3.5.2	Pugh Analysis	38
	3.5.3	Criterion of Selection	39
3.6	Mechan	ical Design	41
	3.6.1	Calculation Analysis	41
	3.6.2	Simulation and Analysis	43
3.7	Market Analysis		
3.7.1	Budget	for Electronic Component	44
3.7.2	Budget for Mechanical Component		
3.8	Technical drawing		48
3.9	Assembly		49
3.10	Setting u	up of Mach3	60
	3.10.1	Installing Mach3	60
	3.10.2	Configure Mach3 Setting	64
	3.10.3	Axis Calibration	68
	3.10.4	Test Run on Machine	71

31

C Universiti Teknikal Malaysia Melaka

CHAPTER 4	RESU	ULT AN	D DISCUS	SSION	75
	4.1	Bench	marking on	Competitive Products	75
	4.2	House	of Quality		78
	4.3	Produc	t Design S	pecification (PDS)	80
	4.4	Conce	pt Generati	on	81
		4.4.1	Morpho	logical Chart	81
		4.4.2	Pugh Ar	nalysis	83
			4.4.2.1	Controller Selection	83
			4.4.2.2	3D Printer Concept	84
	4.5	Mecha	nical Desig	<u>ș</u> n	89
		4.5.1	Calculat	ion Analysis	89
		4.5.2	Simulati	on and Analysis	97
			4.5.2.1	Discussion	106
			4.5.2.2	Conclusion	106
	4.6	Item co	ollection		107
		4.6.1	Electron	ic Component	107
		4.6.2	Mechan	ical Component	111
	4.7	Assem	bly Result		126
		4.7.1	Electron	ic Part	126
		4.7.2	Mechan	ical Part	127
	4.8	Testing	g Result		132
CHAPTER 5	SUM	MARY			135
	5.1 Conclusion			135	
	5.2	Recom	mendation		136
	REFI	ERENC	E		137
	APPI	ENDIX			139

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	The difference between different type of 3D printing process.	13
2.2	Advantage and disadvantages of different types of 3D printing processes.	15
2.3	The material properties of 3D printing materials	16
2.4	The hardware requirement of a 3D printer.	18
2.5	Mach3 electronic requirement.	24
2.7	Advantage and disadvantage of Mach3	27
2.8	Advantage and disadvantage of Arduino	27
3.1	Benchmarking on Competitive Products	33
3.2	Streamlined House of Quality for large-scale size 3D printer	35
3.3	PDS Table	36
3.4	Morphological chart	37
3.5	Pugh Table.	38

3.6	Criterion for control system	39
3.7	Criterion for large-scale size 3D printer	40
3.8	Electronic hardware and price requirement.	44
3.9	Mechanical component requirement.	45
3.10	Assembly tools and their functions	49
3.11	TB6560 motor driver configuration.	59
4.1	Benchmarking on three competitive large-scale size 3D printer at market.	75
4.2	Streamlined House of Quality of large-scale size 3D printer.	79
4.3	PDS Table	80
4.4	Morphological chart	81
4.5	Pugh Analysis for control system.	83
4.6	Pugh Analysis for 3D printer design concept.	88
4.7	The weight of moving platform.	93
4.8	The overall weight of the machine.	96
4.9	Electronic hardware requirement.	107
4.10	Mechanical component requirement.	111
4.11	The comparison between distance travel demand and distance travelled by the printhead module in 3 axes.	132

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	The classification of additive manufacturing process	6
2.2	The concept of FDM 3D printing.	7
2.3	The concept of SLA printing process.	8
2.4	The concept of SLS printing process.	9
2.5	The concept of LOM printing process.	10
2.6	The concept of DLP printing process.	11
2.7	Wire Arc Additive Manufacturing (WAAM)	12
2.8	Mach3 wiring diagram	22
2.9	Construct a 3D model by using 3D design software.	30
2.10	Save the file in STL format.	30
2.11	Slicing a 3D model.	30
3.1	Flow chart of the methodology.	32
3.2	Technical drawing tittle block.	48

3.3	The schematic wiring diagram for Mach3 electronics	50
3.4-3.23	Electronic Wiring Process	51
3.24	Installing Mach3	60
3.25	Configure Mach3 Setting	62
3.26	Axis Calibration	68
3.27	Test Run on Machine	71
4.1	Concept design 1	84
4.2	Concept design 2	85
4.3	Concept design 3	86
4.4	Concept design 4	87
4.5	Cross-sectional area of aluminium profile 3060.	91
4.6	Cross-sectional area of aluminium profile 3030.	92
4.7	Top view of moving platform	92
4.8	ABS pulley stand	94
4.9	Aluminium shaft holder	95
4.10	Stress distribution of First Design.	98
4.11	Displacement distribution of First Design.	99
4.12	The mass properties of initial frame design.	99

4.13	Stress distribution of First Optimization.	100
4.14	Displacement distribution of first optimization.	101
4.15	The mass properties of first optimization	101
4.16	Stress distribution of second optimization.	102
4.17	Displacement distribution of second optimization.	103
4.18	The mass properties of second optimization.	103
4.19	Stress distribution of third optimization.	104
4.20	Displacement distribution of third optimization.	105
4.21	The mass properties of third optimization	105
4.22	Comparison of design against safety factor and mass.	106
4.23	Schematic diagram for the electronic connection.	126
4.24	The completed setup of Mach3 control system.	126
4.25	Schematic diagram for the extruder holder	127
4.26	The completed assembled extruder holder module.	127
4.27	The schematic diagram for the x-axis module	128
4.28	The complete assembled for the x-axis module	128
4.29	The schematic diagram for the y-axis module	129
4.30	The complete assembled for the y-axis module	129

4.31	The schematic diagram for the z-axis module.	130
4.32	The completed assembled z-axis module.	130
4.33	The schematic diagram of the overall assembly of the large-scale size 3D printer.	131
4.34	The completed assembly of the large-scale size 3D printer.	131
4.35-4.37	The comparison between distance travel demand and distance travelled by the printhead module in 3 axes.	133
4.38	The result of test run on x-y axis	134

LIST OF APPENDICES

APPENDIX	TITTLE	PAGE
А	Product Overview	140
В	Mechanical Component	141
С	Electrical Component	182
D	Subassembly	189
Ε	Process of Assembly	201

LIST OF ABBEREVATIONS

- FDM Fused Deposition Modeling
- CAD Computer Aided Design
- CAM Computer Aided Manufacturing
- CNC Computer Numerical Control
- SLA Stereolithography
- DLP Digital Light Processing
- SLS Selective Laser Melting
- SLM Selective Laser Melting
- LOM Digital Object Manufacturing
- UV Ultraviolet
- PLA Polylactic Acid
- ABS Acrylonitrile Butadiene Styrene
- TPU Thermoplastic Polyurethane
- PETG Polyethylene Terephthalate Glycol
- USB Universal Serial Bus
- STL Standard Tessellation Language
- WAAM Wire Arc Additive Manufacturing
- DED Direct Energy Deposition
- COTS Commercial-off-the-shelf
- SS Stainless Sreel

LIST OF SYMBOLS

%	=	Percentage
n	=	Quantity
W	=	Weight
F	=	Force
f	=	Friction
l	=	Length
Т	=	Torque
r	=	Radius
d	=	Diameter
A	=	Area
V	=	Volume
М	=	Moment
т	=	Mass
σ	=	Stress

CHAPTER 1

INTRODUCTION

1.1 Background

3D printing was initiated in 1986, patented by Charles Hull, who invented the earliest stereolithography process (Lipson et.al., 2013). After a few years later in 1988, FDM was introduced by Scott Crump. FDM then became his foundation company, Stratasys (Gibson et.al., 2010). In the year of 2005, Dr Gordon started the open-source 3D printing project. Open-source 3D printer means the software and hardware of the printer are available to the public typically under license. The information is opened to share, edit, improve, modify, innovate, and to build a 3D printer. The purpose of the open-source 3D printer is to develop the technology at a faster pace. RepRap is the earliest open-source 3D printer. It is an open-source community to develop a 3D printer that is able to produce a pure self-replicating device for it to be accessible for anyone. REPRAP was developed by Dr Adreian Bowyer, a mechanical engineering lecturer at the University of Bath in England (Joshua, 2014).

Nowadays, there are many open-source 3D printers in the market. For example, Anet A8, Printrbot Play, Creality CR-10, Prusa i3, Deezmaker Bukito, Rostock Max, Ultimaker 2 Go, Lulzbot Mini, BCN3D Sigmax. (Mika Yeap, n.d.).

1.2 Problem Statement

The conventional manufacturing types of machinery such as a laser cutting machine, lathe machine, and milling machine are limited to produce certain product since the machine is only carried out a specific subtractive cutting action. Traditional manufacturing process can't produce a complex shape and hollow product (Meron, 2012). Furthermore, the traditional manufacturing process cause more material waste. The processed materials generate wastes in the form of fragments or silk. The waste materials are needed to further process to be used again. In contrast, 3D printing can save materials because it is additive manufacturing to realize digital 3D files into a real 3D object. The model is done by building up the object layer by layer (Mpofu, 2012; Berman, 2012). 3D printing is flexible, it can produce just about anything with cost-saving, design of products also can be customized. Most of the 3D printer are control by Arduino system. Arduino also has its advantages, which are small, safe, easy-to-use and reliable, but the Mach3 system can improve this system for better results. The usage of Arduino on 3D printer brings more disadvantages other than advantages to the user and printing process. One of the disadvantages of the Arduino system is vulnerable to heavy industry. In contrast, Mach3 works on Windows PCs to control the motion of motors (stepper & servo) by processing G-Code. Mach3 is a feature rich program which is also easy to use. It provides macro programming capabilities, but programming needs to be done.

1.3 Objectives

The objectives of this project are as follows:

- i. To design and develop a new large-scale size 3D printer.
- ii. To fabricate a new 3D printer with printing size of $(500 \times 500 \times 1000) mm^3$.
- iii. To analyse the developed 3D printer and the print part.

1.4 Scope of Project

The scopes of this project are:

- i. Development of a new large-scale size metal 3D printer by using Mach3 control system.
- Development of a new large-scale size 3D printer by using the concept of Wire Arc Additive Manufacturing.
- iii. The heating source is from micro-plasma.

1.5 General Methodology

The flow chart of this project is shown in Figure 3.1. This project starts by literature review about the non-commercialize software called Mach3 and understanding conventional and construction process of a 3D printer. Then, market analysis is carried out to determine the electronic hardware requirement to integrate Mach3 on a 3D printer. After that, the functions, advantages and disadvantages of competing products are compared and figured out. Next, the budget of the project based on the products on the market is determined. Next, a House of Quality was created to determine the interrelationship between customer requirements and engineering characteristic of the product. Meanwhile, the design specification of the machine is listed for the product and the performance requirement. Then, several concept designs are created and analyse the best solution from multiple options as the reference for product development. The design and simulation were done in CAD software to illustrate the product. Then, the items listed in the bills of material is gathered. Next, the technical drawing of the design is generated by using CAD software. After the hardware is presented and assembled, Mach3 is integrated to the chassis. A report is written and submitted. Finally, present information about the large-scale size 3D printer to the panels.

CHAPTER 2

LITERATURE REVIEW

2.1 What is 3D printing?

3D printing is a kind of additive manufacturing to realize a digital 3D files into a real 3D object. The model is done by building up the object layer by layer (Mpofu, 2012; Berman, 2012). 3D printing, also known as rapid-prototyping is also a part of the manufacturing process. Normally, industries use a 3D printer to print out the designed product for testing in the alpha phase (before the product launch in the market). That's why 3D printing has a name of rapid prototyping. However, there is still some section of industries use a 3D printer to manufacture the finalized product such as a toy, key chain, pictures, 3D text, prosthetic arm, mechanical parts of the machine, and even medicine. 3D printing is a small production manufacturing process, it can't be a mass production since the manufacturing process takes times to complete a unit (King, 2012).