

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF SAFE AIRPORT TROLLEY

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

by

MIFZAL SYAHIRAN BIN MISWAN B071610297 940904-5869

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF SAFE AIRPORT TROLLEY

Sesi Pengajian: 2019

Saya **MIFZAL SYAHIRAN BIN MISWAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD*

TERHAD

Yang benar,

Disahkan oleh penyelia:

Cop Rasmi Penyelia

.....

EN ZAIHASRAF BIN ZAKARIA

.....

MIFZAL SYAHIRAN BIN MISWAN

Alamat Tetap:

No 63, JALAN BATU NILAM 7,

BANDAR BUKIT TINGGI,

41200, KLANG, SELANGOR

Tarikh: 13 DECEMBER 2019

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF SAFE AIRPORT TROLLEY is the results of my own research except as cited in references.

Signature:	
Author:	MIFZAL SYAHIRAN BIN MISWAN
Date:	13 DECEMBER 2019

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

Signature: EN ZAIHASRAF BIN ZAKARIA

ABSTRAK

Di Lapangan Terbang, troli merupakan sesuatu alat yang digunakan untuk membawa bagasi penumpang dari sesuatu tempat ke sesuatu tempat. Troli pintar lapangan terbang ini dicipta dengan ciri-ciri keselamatan yang dapat membantu pengguna troli untuk mengelak sebarang pelanggaran dilapangan terbang.Penggunaan Arduino adalah untuk mengawal pergerakan troli. Projek ini terdiri daripada dua bahagian utama iaitu perkakasan dan perisian. Bahagian perkakasan adalah bahagian yang dilengkapi dengan litar arduino dan rangka troli. Manakala bahagian perisian untuk projek ini pula ialah dengan menggunakan perisian yang diprogramkan Arduino bersama sensor sebagai peranti keselamatan untuk troli ini. Selain itu, troli ini juga dilengkapi dengan butang suis sebagai peranti kemasukan kepada mikrokontroler untuk mengawal DC motor dan juga dilengkapi dengan roda getah untuk menggerakkan troli. Sensor adalah peranti yang digunakan untuk melindungi troli dan juga untuk mengelakkan daripada berlaku sebarang pelanggaran di lapangan terbang apabila pengguna kehilangan perhatian mereka semasa mengendalikan troli. Sensor juga digunakan sebagai peranti kemasukan kepada mikrokontroler untuk mengawal troli. Apabila sensor mengesan sebarang halangan berhampiran troli, troli secara automatik akan berhenti dari sebarang pergerakan. Dengan mencipta projek ini, troli dapat digunakan di lapangan terbang dengan lebih selamat dan memudahkan pengguna untuk membawa bagasi dan beg pakaian masingmasing yang lebih berat menggunakan bantuan motor yang akan menggerakkan troli. Rangka troli diperbuat menggunakan keluli tahan karat.

ABSTRACT

In airport, trolley is the must for transporting passenger luggage from one point to another. This safe airport trolley is being developed with safety features that can help to avoid collision. The use of Arduino is to control the movement of the trolley. This project consists with two main parts which is hardware and software. The hardware parts were developing the interface circuit between Arduino and the trolley. While the software parts for this project is using programmable software with the sensor as safety device for this trolley. Furthermore, this trolley also will be equipped with switch button as input device to the microcontroller to control the DC motor and rubber wheels to move the trolley. The sensor is a device to use to protect the trolley and to avoid any obstacle at the airport when users lose their attention in handling the trolley. The sensor is use as an input device for the microcontroller to control the trolley and if the sensor is detecting any obstacle near the trolley, the trolley will automatically stop any movement. By developing this project, the application or implementation of this Safe Airport Trolley can be use at airport to make the traveller convenience to push the trolley to carry their individual luggage and suitcase easier and when they bring heavy bags, the trolley motor will work to move the trolley easily. The trolley is made by stainless steel or aluminium alloy.

DEDICATION

I would like to the dedicate this project to almighty "Allah" who gave me capability, energy, strength, spirit and patience to complete this bachelor's degree project. To my family especially my parents who always support, understanding and care about me. It a great pleasure to express my profound sense of gratitude to my supervisor for always give me an idea, advice, guidance, constant encouragement and all other supports throughout this project work and preparing this project report successfully. I am really benefited from his excellent supervision. I would like to thanks to all of our friends and those who always helped me and gave me mental support at different stage in different moment in my project.

ACKNOWLEDGEMENTS

Assalamualaikum W.B.T

First of all, I would like to express my deepest and sincerest appreciation to my supervisor, Mr. Zaihasraf Bin Zakaria for his relentless support, valuable guidance and provided me the possibility to complete this report. His advices, suggestion, comment and encouragement are useful and helpful for me to complete this Final Year Project (FYP). His words have encouraged me to overcome any problems faced during FYP. Furthermore, I would also like to acknowledge with much appreciation to my FYP panel En Shahrudin Bin Zakaria & En Mustafa Bin Manaf for the good cooperation, opinion and information for my Final Year Project (FYP).

I am also wished to dedicate this project to my parent and my family who have given me strength and moral support until the end of this semester. Last but not least, I would like to thank to those individuals who have directly or indirectly involved and generously shared their knowledge and idea in order to complete this FYP report.

Thank You.

TABLE OF CONTENTS

TARI	P E OF CONTENTS	AGE
IADI		л
LIST	OF TABLES	xivv
LIST	OF FIGURES	XV
LIST	OF APPENDICES	xviii
LIST	OF SYMBOLS	xixx
LIST	OF ABBREVIATIONS	XX
CHA	PTER 1 INTRODUCTION	1
1.1	Project Overview	1
1.2	Project Objectives	2
1.3	Problem Statement	3
1.4	Project Scope	4
CHA	PTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Technical Research	5
2.3	First Review: Multi-purpose Airport Trolley with manual breaking system	6
2.4	Second Review: Electric Wheelchair	7
2.5	Third Review: Obstacle Avoidance Robot	9

CHAI	PTER 3	METHODOLOGY	11
3.1	Introd	uction	11
3.2	Process Flow Chart		12
3.3	Projec	t Methodolgy	13
3.4	Hardw	are	13
	3.4.1	Arduino Uno R3	14
	3.4.2	DC Motor (Power Window Motor)	16
	3.4.3	Adjustable Infrared Sensor	22
	3.4.4	Motor Driver	22
	3.4.5	Joystick Module	22
	3.4.6	LCD I2C	23
3.5	Softwa	are	24
	3.5.1	Infrared Sensor Program	26
	3.5.2	DC Motor Program	27
	3.5.3	Joystick Program	28
	3.5.4	Battery Display Program	29
3.6	Solidv	vork Software	30
3.7	Electro	onic Circuit Design	35
3.8	Projec	t Development Process	36
3.9	Arduii	no Full Program	40

3.10	Intergration of Components to Build Complete Model	42
3.11	Gantt Chart	43
3.12	Project Planning	44
CILLI		
CHAI	TER 4 RESULT AND DISCUSSION	45
4.1	Introduction	45
4.2	Development of Electonic Circuit	45
4.3	Arduino Programming	45
4.4	Interface Circuit Between Arduino with DC Motor and Sensor	46
4.5	Project Progress Flowchart	47
4.6	Project Result 4	
4.7	Project Process Result	50
4.8	The Trolley Detected Obstacles	52
4.9	Analysis	53
	4.9.1 Analysis Distance of Trolley with Obstacle	54
	4.9.2 Analysis the Speed of Trolley	56
4.10	Discussion	57
CHAI	PTER 5 CONCLUSION	59
5.1	Suggestions	59
5.2	Conclusions	60

xii

REFERENCES

APPENDIX

62

61

xiii

LIST OF TABLES

TABLE	TITLE	
Table 1.1:	No of Accident From 2015 to 2018	4
Table 3.1:	Specification of Power Window Motor	17
Table 3.2:	Motor Driver Specifications	20
Table 4.1:	Distance Trolley stop with Different Types of Surface	54
Table 4.2:	Time Taken for Trolley with Different Load	56

xiv

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	Statistic number of Accident at Airport	4
Figure 2.1:	Example Airport Trolley with Break	7
Figure 2.2:	Electric Wheelchair	8
Figure 2.3:	Obstacle Avoidance Robot	10
Figure 3.1:	Flowchart	12
Figure 3.2:	Arduino UNO R3	14
Figure 3.3:	Arduino UNO Pin Layout	15
Figure 3.4:	DC Power Window Motor	17
Figure 3.5:	IR Obstacle Sensor	18
Figure 3.6:	IR Obstacle Sensor Module with Arduino	19
Figure 3.7:	Motor Driver MDD10A Board	20
Figure 3.8:	DC Motor Interface with Arduino	21
Figure 3.9:	Joystick Module	22
Figure 3.10:	Joystick Connection with Arduino	23
Figure 3.11:	LCD I2C	23
Figure 3.12:	LCD Connection with Arduino	24

Figure 3.13:	Arduino 1.8.9 Software Interface	25
Figure 3.14:	Infrared Sensor Module with Arduino Software	
Figure 3.15:	DC Motor with Arduino Program	27
Figure 3.16:	Joystick with Arduino Program	28
Figure 3.17:	Battery Display with Arduino Program	29
Figure 3.18:	3D View of Airport Trolley	30
Figure 3.19:	Front View of Airport Trolley	31
Figure 3.20:	Back View of Airport Trolley	32
Figure 3.21:	Top View of Airport Trolley	33
Figure 3.22:	Side View of Airport Trolley	33
Figure 3.23:	Bottom View of Airport Trolley	34
Figure 3.24:	Device Connection	35
Figure 3.25:	Device Connection in Proteus	35
Figure 3.26:	Frame Development	36
Figure 3.27:	Frame Completely Develop	37
Figure 3.28:	Circuit Connection Test	38
Figure 3.29:	Voltage Regulator 12V to 5V Circuit	38
Figure 3.30:	Installing the Circuit to The Device	39
Figure 3.31:	Gantt Chart	43
Figure 4.1:	Project Flow Chart	48
Figure 4.2:	Front and Side View of The Trolley xvi	49

Figure 4.3:	Bottom and 3D View of The Trolley	
Figure 4.4:	Top View of The Trolley	50
Figure 4.5:	LCD Display the Trolley Ready to Move	50
Figure 4.6:	LCD Display the Trolley Move Forward	50
Figure 4.7:	LCD Display the Trolley at Reverse	51
Figure 4.8:	LCD Display the Trolley Move Right	51
Figure 4.9:	LCD Display the Trolley Move Left	51
Figure 4.10:	LCD Display the Obstacle Ahead	52
Figure 4.11:	The Trolley Detected the Obstacle	52
Figure 4.12:	Sensor Give an Input	53
Figure 4.13:	Variety Type of Obstacle Surface	54
Figure 4.14:	Graph for Distance Trolley Stop with Different Types of Surface	55
Figure 4.15:	Graph of The Time Taken for Trolley with Different Loads	56

xvii

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
	Appendix 1	Arduino UNO R3 Datasheet	63
	Appendix 2	Motor Driver MDD10A Datasheet	67
	Appendix 3	Joystick Module Datasheet	77
	Appendix 4	LCD I2C Datasheet	84
	Appendix 5	Voltage Regulator LM7805 Datasheet	86

xviii

LIST OF SYMBOLS

μF	-	Micro Farad
KG	-	Kilogram
S	-	Seconds
\mathbf{V}	-	Voltage
cm	-	Centimetre
mA	-	Milli Ampere

xix

LIST OF ABBREVIATIONS

IDE	-	Integrated Development Environment	
DC	-	Direct Current	
FYP	-	Final Year Project	
LGPL	-	Lesser General Public License	
GPL	-	General Public License	
USB	-	Universal Serial Bus	
LED	-	Light Emitting Diode	

CHAPTER 1

INTRODUCTION

This chapter will explain the project's overview, goals, problem statement, and scope. Trolley is the device that will be used to transport the load or the material from one point to another. Baggage trolley or luggage trolley is a small vehicle for passengers to transport individual luggage around the terminal building. Sylvan Goldman invented the baggage cart by supermarket entrepreneur and shopping cart inventor. The carts are available at airports, train stations, large bus stations or luggage transportation hotels and may be free of charge. The trolleys are usually owned by the airport company. Airport trolley or Baggage carts are usually made from steel and equipped with three or four wheels. They are usually equipped with a brake for safety reasons. Usually, the handle has to be pushed down to move the cart. In the interests of safety, please don't let children ride on the trolleys.

1.1 **Project Overview**

Development of Safe Airport Trolley is a project which is based on using Arduino as microcontroller as a memory store to control the movement of the trolley. This project also completes with safety features. Safety feature means the trolley will be equipped with sensor to avoid the obstacle. The sensor will function as an anti-collision detector component. This project is intended to upgrade and modify the available airport trolley that use manual handling and with the manual braking system. Apart from this, microcontroller Arduino will be program and motor will be used to control the movement of the trolley during long distance to the departure gate and the sensor as a device for braking system. The switch button will control the trolley movement forward, right and left. The trolley will be equipped with three wheels. This trolley will have three sensors that places on front and side of the trolley. The first sensor will detect any obstacle infront of the trolley and if the sensor is detected any obstacle the trolley can't move forward but still can move to right or left. Another two sensor will use at side sensor and will function as same as first sensor situation when detected. By developing this project, it will increase the convenience level for the airport trolley users and the trolley will be more reliable, safe, easy to use, passenger satisfaction guarantees and even smooth the operation of daily airport operations.

1.2 Project Objectives

Airport trolley has been majorly produced by a few companies from China with more than 15 years' experience of producing an airport trolley. The trolley has been shipped or supplied for more than 90 international airports all over the world. The development of safe airport trolley is a project that has new technology feature to renew the existing trolley. The main goals of the project is:

- To design and implement the airport trolley complete with programmable device microcontroller system (Arduino) and motor to control the movement (forward, right, left and reverse).
- To design a trolley with safety feature anti-collision system that can detect and avoid the obstacle that may create any accident or harmful.

In order to achieve the objective of this project, there is several knowledges about the sensor, microcontroller circuit, motor and compatible software is needed to be determined.

1.3 Problem Statement

Nowadays, as we know, the number of people at airport is increasing and the numbers of trolley user will also be increasing because high of air transport demand. All the travellers will bring their baggage and heavy luggage to their destination. The probability of having any accident at the airport also will increase. Some time, they will feel inconvenience in bringing their things as it is tiring to push the trolley when the trolleys were fully loaded with heavy luggage. There are a few reported about the trolley hitting others traveller or trolley hitting another trolley as shown in Figure 1. The statistic number of accidents from 2015 to 2018 show that the number of accidents increasing year by year. The existing trolley at the airport must handle manually and has to be pushed down in order to move the trolley, however the handle will activate the break when the handle is releases. This thing will create difficulty to the traveller to move the trolley when they must always push down the handle to move the trolley. Besides that, they sometimes faced with the collision when they lose their attention in handling the trolley. Apart from that, this development of safe airport trolley will be built to make traveller feel easy and reduce collision at airport. By creating to this project, user will save their energy from pushing their trolley, but it will move by itself and can avoid any obstacle and the most important is safe from any accident.

3

Table 1.1:	No of	Accident	From	2015	to	2018
-------------------	-------	----------	------	------	----	------

Year	2015	2016	2017	2018
No of Accident	29	34	40	42

Figure 1.1: Statistic number of Accident at Airport

1.4 Project Scope

The scope of this project is to design a prototype model of safety airport trolley that capable to move forward, left, right and reverse and fully equipped the airport trolley with safety system that can detect and avoid obstacle by using sensor and programmable microcontroller. It consists of electronic circuit with Arduino, movement button switch and power window motor. The functional of Arduino in this project is to control power window motor as a device to control movement of the trolley and the sensor as a device to detect the obstacle in the trolley. This project will implement Arduino as main microcontroller as the main part or component to control the trolley.