

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BUILDING ENERGY PERFORMANCE: CHALLENGES & POTENTIAL

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

by

MUHAMMAD AMMAR BIN MAHADI B071610388 950307-03-5347

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: BUILDING ENERGY PERFORMANCE: CHALLENGES & POTENTIAL

Sesi Pengajian: 2019

Saya MUHAMMAD AMMAR BIN MAHADI mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD*

TERHAD

Yang benar,

Disahkan oleh penyelia:

MUHAMMAD AMMAR BIN MAHADIKAMILAH BINTI JAFFARAlamat Tetap:Cop Rasmi PenyeliaLot 1301, Lorong Masjid Guntong,Simpang 4 Limbat,16150, Kota Bharu, Kelantan.

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled BUILDING ENERGY PERFORMANCE: CHALLENGES & POTENTIAL is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	KAMILAH BINTI JAFFAR

Signature:

Co-supervisor: EMY ZAIRAH BINTI AHMAD

ABSTRAK

Bangunan komersil menggunakan lebih banyak tenaga dan membazirkan banyak sumber semula jadi yang membawa kepada pengeluaran karbon dioksida yang banyak dan dapat menyebabkan pencemaran alam sekitar. Penyelidikan ini akan menumpukan kepada potensi bangunan untuk mengurangkan penggunaan elektrik dan mengurangkan bil elektrik tanpa menjejaskan penggunaan tenaga peralatan. Sistem pengurusan tenaga dilaksanakan dengan meminimumkan kehilangan tenaga dan memaksimumkan kecekapan tenaga. Selain itu, terdapat beberapa tindakan yang digunakan sebagai langkah untuk penjimatan tenaga dan juga penjimatan kos. Kajian ini menganggarkan penjimatan tenaga yang berpotensi dicapai dengan menggantikan mentol Fluorescent Kompak (CFL) kepada mentol Pemancar Diod (LED) dan memasang sistem Lampu automatik di dalam bangunan MBMB. Audit tenaga terperinci akan terlibat dalam menganalisis prestasi dan parameter bangunaan tenaga. Ia menganggarkan bahawa 30384 kWh penggunaan tenaga tahunan dapat dikurangkan melalui penerapan langkah-langkah penjimatan tenaga.

ABSTRACT

Commercial buildings consume more energy and waste more natural resources, which leads to more carbon dioxide production and environmental pollution. This research will focus on the potential of building to reduce its electricity consumption and reducing the electricity bills without negatively affecting the outputs. The energy management system is implemented by minimization of energy loss and maximization of energy efficiency. Other than that, there are some action by applying energy saving measures may result in cost saving. This study estimated the energy saving potentially achieved by replacing the Compact Fluorescent (CFL) bulbs to Light Emitting Diode (LED) bulbs and installing Automatic Light system in the MBMB building. The detailed energy audit will involve in analysing the performance and parameters of the building and identify the area that has potential to reduce the energy consumption. It estimated that 30384 kWh of annual energy consumption can be saved through the application of the energy saving measures.

DEDICATION

This study is wholeheartedly dedicated to my beloved parents, who have been my source of inspiration and gave me strength when I thought of giving up, who continually provide their moral, spiritual, emotional, and financial support. Secondly, I would like to thank my family members, friends, and classmates who shared their words of advice and encouragement to finish this research.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God Almighty for giving me strength in times of needs and place of comfort. With my deepest sense of gratitude, I would like to express my special thanks of gratitude to my supervisor, Madam Kamilah Binti Jaffar who provided me with never ending encouragement and support to complete this project research, which also helped me in doing a lot of research and I came to know about so many new things that I never experienced before. I'm really thankful to her and not forget to Madam Emy Zairah Binti Ahmad who also involved in this research.

TABLE OF CONTENTS

		PAGE
ТАВ	BLE OF CONTENTS	X
LIST	Γ OF TABLES	XV
LIST	Γ OF FIGURES	xvii
LIST	ST OF APPENDICES	
LIST	Γ OF SYMBOLS	XX
LIST	FOF ABBREVIATIONS	xxi
СНА	APTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Background of Project	1
1.3	Problem Statement	2
1.4	Objective of Research	3
1.5	Scope and Limitation of Research	3
1.6	Summary of Chapter	4
СНА	APTER 2: LITERATURE REVIEW	5
2.1	Introduction	5
2.2	World energy use	5
	2.2.1 Energy consumption in buildings	6
	2.2.2 Commercial buildings	7

х

2.3	Industrial sector	7
2.4	Energy use in Malaysia	8
	2.4.1 Building in Malaysia	9
2.5	Energy Management Standard	9
2.6	Energy Management Gold Standard	11
2.7	Energy Management Matrix	13
2.8	Energy Management System	14
	2.8.1 Electrical Energy Audit	14
2.9	Daylight illuminance	15
	2.9.1 Lighting MS 1525 Standard	16
2.10	Building Energy Index	17
2.11	Summary of Chapter	18
		10
СНА	PIER 3: METHODOLOGY	19
3.1	Introduction	19
3.2	Flow Progress of Project	19
3.3	Main Block Diagram	19
3.4	Description of Block Diagram	19
	3.4.1 Plan	20
	3.4.2 Do	20
	3.4.3 Check	20
	3.4.4 Act	20
3.5	Flow Chart of Methodology	21
3.6	Process of Flow Chart	22

	3.6.1 Walk-through Site Audit	22
	3.6.2 Interview and Obtaining Data from Facility Manager	22
	3.6.3 Analyse the result	22
	3.6.4 Energy Saving Measures	23
	3.6.5 Recommendation method	23
3.7	Instrument Used in Energy Audit	23
	3.7.1 Clamp Meter	23
	3.7.2 Lux Meter	24
	3.7.3 Laser Distance Meter	24
	3.7.4 Temperature Sensor	25
	3.7.5 Power Quality Analyzer	25
3.8	Sustainable Energy Management Roadmap	26
	3.8.1 Evaluation/Energy Management Matrix	26
	3.8.2 Energy Policy	27
	3.8.3 Energy Management Gold Standard (EMGS)	28
3.9	Selected Commercial Building	29
	3.9.1 Building Characteristics	29
	3.9.2 Location	29
	3.9.3 Orientations of the Building	30
	3.9.4 Building Area	31
	3.9.5 Operating Hour of The Building	32
	3.9.6 Room Categories	32
3.10	Project Target	33
3.11	Automatic Light System	33

xii

	3.11.1 TSL2561(Lux Sensor)	33	
	3.11.2 Arduino Uno R3	34	
	3.11.3 Relays	34	
	3.11.4 LED Bulb	35	
3.12	Circuit Diagram	35	
	3.12.1 Hardware of The Automatic Light	36	
	3.12.2 Circuit Operation	36	
	3.12.3 Arduino Coding of The System	37	
3.13	Summary of the Chapter	45	
CHAPTER 4: RESULT AND DISCUSSION 46			
4.1	Introduction	46	
4.2	Preliminary Result	46	
4.3	Electrical System in Building	46	
	4.3.1 Electricity Tariff	47	
	4.3.2 Energy Consumption	47	
	4.3.3 Building Energy Index Evaluation	49	
4.4	Breakdown of Energy Usage	49	
4.5	Lighting System MBMB Building	50	
	4.5.1 Types of Lights	50	
4.6	Operation Hours of Lighting System	53	
4.7	Energy Consumption of Lighting System	54	
4.8	Indoor Comfort Level	56	
	4.8.1 Lux Level	56	

xiii

4.9	Energy Saving Measures	57
	4.9.1 Replacement of Compact Fluorescent (CFL) Bulb	58
	4.9.2 Installation of Automatic Light	59
4.10	Summary of Energy Saving Measure	61

CHAPTER 5: CONCLUSION

62

5.1	Conclusion	62
5.2	Recommendation	62

REFERENCES 64

APPENDIX 67

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Energy consumption in commercial sector by building type	6
Table 2.2:	Primary energy consumption of Malaysia during 2000-2008	6
Table 2.3:	Energy consumption in commercial sector by building type	7
Table 2.4:	Primary energy consumption of Malaysia during 2000-2008	8
Table 2.5:	Regional electricity generation in Malaysia, 2012	9
Table 2.6:	Regional and sectoral electricity consumption in Malaysia, 201	2 9
Table 2.7:	EMGS STAR Certification and Requirement: AEMAS Standar	rd 12
Table 2.8:	Energy Management Matrix	13
Table 2.9:	Recommended average illuminance levels	16
Table 3.1:	Energy Management Matrix for MBMB	27
Table 3.2:	Building Information	29
Table 3.3:	Gross Floor Area & Air-conditioned Area	31
Table 3.4:	Room Categories	32
Table 3.5:	Lux Level Setting in Arduino Uno R3	37
Table 3.6:	Arduino Coding of Automatic Light	45
Table 4.1:	Electricity Tariff B from TNB	47
Table 4.2:	Total energy consumption	47
Table 4.3:	Number and types of lamps installed in different room categori	es 52
Table 4.4:	Power rating of lamps	53
Table 4.5:	Lighting operation hours by room category	54

Table 4.6:	Energy Consumption by room category	55
Table 4.7:	Comparison between LED and CFL	58
Table 4.8:	Automatic Light Measure	59
Table 4.9:	Lux Level Setting in Arduino Uno	60
Table 4.10:	Energy Saving Measure	61

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	World total final consumption from 1971 to 2011 by regions	5
Figure 2.2:	Net increases in industrial energy use by region between 2006	and
2030		8
Figure 2.3:	Sustainable cost reduction through energy management	10
Figure 2.4:	PDCA cycle to accomplish an energy management system	11
Figure 2.5:	Building Energy Index of building in Malaysia	17
Figure 3.1:	Clamp meter for Ampere measure	24
Figure 3.2:	Lux meter for lighting measurement	24
Figure 3.3:	Laser Distance Meter for distance measurement	25
Figure 3.4:	Temperature meter for temperature measurement	25
Figure 3.5:	Power Quality Analyzer for electrical parameters measuremen	t 26
Figure 3.6:	JB Sentral Energy Policy	28
Figure 3.7:	EMGS Star Certification	28
Figure 3.8:	Location of the building	30
Figure 3.9:	Graha Makmur Building (MBMB)	31
Figure 3.10:	Lux Sensor	33
Figure 3.11:	Arduino Uno R3	34
Figure 3.12:	5V Relays	34
Figure 3.13:	Light Emitting Diode (LED) Bulb	35

Figure 3.14:	Connection of Automatic Light Circuit	35
Figure 3.15:	Hardware of the Automatic Light prototype	36
Figure 4.1:	Electricity consumption	48
Figure 4.2:	Distribution of electricity consumption	49
Figure 4.3:	Examples of lighting at lift lobby	51
Figure 4.4:	Examples of lighting at main entrance lobby	51
Figure 4.5:	Energy consumption for lighting by room category	55
Figure 4.6:	The measured illuminance levels and the recommended levels	57

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE Appendix 1 Electricity Tariff 67 Appendix 2 Lux Meter 69 Appendix 3 70 Laser Distance Meter Appendix 4 MS 1525 Lighting Standard 71 Appendix 5 TSL2561(Lux Sensor) 72 Appendix 6 Arduino Uno R3 73

LIST OF SYMBOLS

m	-	meter
kWh	-	Kilowatt Hour
kV	-	kilo-Volt
AC	-	Alternative Current

LIST OF ABBREVIATIONS

EEM	Energy Efficient Mortgage		
EMMER	Efficient Management of Electrical Energy Regulations		
BMS	Building Management System		
BEI	Building Energy Index		
ISO	International Organisation for Standardisation		
EMGS	Energy Management Gold Standard		
AEMAS	ASEAN Energy Management Scheme		
BEMS	Building energy management system		
MSB	Main Switch Box		
LED	Light Emitting Diode		
CFL	Compact Fluorescent		
MS	Malaysia Standard		
MBMB	Majlis Bandaraya Melaka Bersejarah		

CHAPTER 1: INTRODUCTION

1.1 Introduction

This chapter will clarify about the background of the project, problem statement, objective, scope, and project significant of this project which is the highlight of the project.

1.2 Background of Project

Nowadays, electricity is a form of energy that people need it for just about everything because in this era, almost all of modern conveniences are electrically powered. Plus, electricity is a particularly high grade of energy and the lifeblood of a modern society. So huge amount of energy needed for countries with faster economic growth. On the other hand, the energy consumption can be divided into four main sector which are industrial, commercial, residential and transportation. The demand of energy for housing and building is increasing all over the world because of the increasing population and in the meantime, it leads to the rise in the demand of energy use.

Sometime people do not realise that they are wasting a lot of electricity by doing unnecessary task. If the usage of the electricity is not managed properly it could lead to the wastage and the electricity bills also will increase. So, it is something that the user needs to avoid by applying energy saving policies may result in cost saving. Based on A.Allouhi's article, the building sector is considered as the biggest contributor to world energy consumption, greenhouse gas emissions and has exceeded the other major sectors: industrial and transportation. Therefore, a good understanding of the nature and the structure of energy use in buildings is important for the future.

1

Furthermore, implement the energy management system which is called as energy audit in the buildings can improve and reduce the energy consumption. An energy audit can be defined as a systematic process to evaluate and analyse the profile of energy utilization to develop energy efficiency measures Energy Efficient Mortgage (EEM) in buildings. It is conducted by collecting a simple or detailed energy data of the building's real energy utilization and then to be compared with the normative standard energy utilization for developing the EEMs.

1.3 Problem Statement

Malaysia as a rapidly growing country, has raised concerns over limitation of energy resources, and heavy environmental impacts because of the increasing of the buildings. If there is no any action on the environmental effects, the concentration of the carbon dioxide and other hazardous gases released to the environment would increase over years and at the meantime increase the global temperature.

In 2008, the Energy Commission (Regulatory Agency for electricity supply and piped gas supply industry in Peninsular Malaysia and Sabah) regulates the Efficient Management of Electrical Energy Regulations 2008 (EMEER 2008) which has been gazetted on 15th December 2008 (Under Electricity Supply Act 1990). The regulation states that the consumer in any installation which receives energy from a license or supply authority with a total electricity consumption equal to or exceeding 3 000 000kW has measured at one metering point or more over any period of six consecutive months must notify and appoint an electrical energy manager for energy audit recommendation for electrical energy management.

On the other hand, some of the commercial buildings in Malaysia is not fully automated which is controlled by Building Management System (BMS) so wastage of the electricity would occur. Plus, during the energy audit session, the continuous data monitoring of energy parameters is very important because it needs to be monitored thoroughly for the best adjustment in reducing the electricity usage in the building and further analysis. Also, the lack of the awareness about the of the electricity usage contributes to the increment of the electricity bills where the equipment is not used properly and efficiently.

1.4 Objective of Research

Studies carried out to successfully build this project based on the expected objectives:

- I. To carry out energy audit for the commercial building.
- II. To analyse energy management system in commercial building.
- III. To improve the overall energy performance and efficiency of selected building through sustainable energy management program.

1.5 Scope and Limitation of Research

Implement the energy management system in the building is the main scope of this final year project. This project will focus on the potential of building to reduce its electricity consumption and reducing the electricity bills. The energy management system is implemented by minimization of energy loss and maximization of energy efficiency.