

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ULTRA-WIDEBAND BANDPASS FILTER USING U-SLOTTED SUBSTRATE INTEGRATED WAVEGUIDE (SIW) CAVITIES AT 12 GHZ FOR X-KU BAND RADAR APPLICATION

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

by

SYAHIRAH BINTI EDWARD B071610485 960809-05-5240

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: ULTRA-WIDEBAND BANDPASS FILTER USING U-SLOTTED SUBSTRATE INTEGRATED WAVEGUIDE (SIW) CAVITIES AT 12 GHZ FOR X-KU BAND RADAR APPLICATION

Sesi Pengajian: 2019

Saya **SYAHIRAH BINTI EDWARD** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
		kepentingan M	alaysia seb	agaiman	a yang term	aktub dalam A	KTA
	SULIT*	RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat	TERHA	D yang te	lah ditentukan	oleh
	TERIAD	organisasi/bada	an di mana	penyelic	likan dijalaı	nkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang	benar,		Dis	ahkan o	leh penyelia	a:	
SYAF	IIRAH BINTI	EDWARD	AD	IB BIN	OTHMAN		
Alama	at Tetap:		Co	p Rasmi	Penyelia		
Х							
Х							
Х							
Tarikh	1:		Tai	ikh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled ULTRA-WIDEBAND BANDPASS FILTER USING U-SLOTTED SUBSTRATE INTEGRATED WAVEGUIDE (SIW) CAVITIES AT 12 GHZ FOR X-KU BAND RADAR APPLICATION is the results of my own research except as cited in references.

> Signature: Author : SYAHIRAH BINTI EDWARD Date:

APPROVAL

This report is submitted to the Faculty of Electrical and Electronics Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronis Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:

Signature: ADIB BIN OTHMAN

ABSTRAK

Ultra-wideband (UWB) substrat pandu gelombang bersepadu penapis lulus jalur yang disyorkan dan direka bentuk menggunakan bentuk slot U substrat pandu gelombang bersepadu dan tambahan lubang untuk aplikasi band X-Ku. Untuk mencapai Ultrawideband (UWB), slot berbentuk U pada lapisan tembaga di bahagian atas digunakan untuk membentuk menambah bilangan mod baru bagi resonator sambil mengekalkan saiz penapis menjadi kecil. Untuk kesan suapan h dan w, jika nilai h meningkat, peralihan tindak balas frekuensi akan ke kanan. Namun bagi w, jika nilai w meningkat, jalur lebar masih sama tetapi nilai kekerapan resonan dan kehilangan kembali akan berbeza. Untuk panjang diantara slot bentuk U (g), jika nilai g berkurangan, jalur lebar akan berkurangan dan frekuensi "cut-off" beralih kepada nilai frekuensi kecil. Selain itu, sebagai panjang slot bentuk U (k) meningkat, peralihan tindak balas frekuensi akan ke kiri dan jalur lebar menjadi lebih kecil. Selain itu, tambahan melalui lubang digunakan untuk mengalihkan frekuensi kepada frekuensi yang lebih tinggi. Dalam reka bentuk penapiis yang dicadangkan ini, substrat yang digunakan adalah Rogers 4350 dengan pemalar dielektrik 3.66 dan ketebalan 0.508mm. Hasil simulasi menunjukkan bahawa penapis mencapai kehilangan sisipan lebih besar daripada -0.405dB, kehilangan kerugian lebih kecil daripada -10.5dB, dan lebar jalur fraktional -3dB sebanyak 60.8%.

ABSTRACT

An Ultra-wideband (UWB) Substrate Integrated Waveguide (SIW) bandpass filter is proposed and designed using U shape slot Substrate Integrated Waveguide (SIW) cavities and additional via hole for X-Ku band radar application. In order to achieved an Ultrawideband (UWB), the U shape slots at the top copper layer are used to form a new multiple-mode resonator (MMR) while keeping the size of the filter to be small. For the effect of feed line h and w, as the value of h increase, the frequency response shift to the right. While for w, as the value of w increase, the bandwidth is still the same but the value of the resonance frequency and the return loss will be different. For the length between U shape slots (g), as the value of g decreases, the bandwidth will be decrease and the uppercut-off frequency shift to small frequency value. Besides, as the length of U shape slots (k) increase, the frequency response shift to the left and the bandwidth became smaller. Other than that, the additional via hole is used to shift the center frequency to a higher frequency. In this proposed filter design, the substrate used is Rogers 4350 with a dielectric constant of 3.66 and thickness of 0.508mm. The simulation results show that the filter achieved insertion loss bigger than -0.405dB, return loss smaller than -10.5dB, and 3dB fractional bandwidth of 60.8%.

vii

DEDICATION

Dedication for my beloved parents, Mr Edward bin Basir and Mrs Nina Triana binti Asril and also my siblings, and my supportive supervisor, Mr Adib bin Othman and my lovely friends and someone that always help me during my degree.

viii

ACKNOWLEDGEMENTS

SubhanAllah and Alhamdulillah, with the name of Allah S.W.T the most merciful, with His blessing upon me for the responsibilities that have been given to me to do this Final Year Project (FYP) successfully.

First of all, I would like to give appreciation and a big thanks for my supervisor, Mr. Adib bin Othman for his invaluable guidance and, supervision and support towards completing this project and thesis successfully. He has provide a good guideline, ideas and recommendation for me. Thank you very much.

I am deeply indebted to my parents Mr Edward bin Basir and Mrs Nina Triana for their continuous support, encouragement and prayers during all these years. Thanks also go to my siblings Nurhasniza binti Edward, Muhamad Hafiz bin Edward, Muhammad Tajuddin bin Edward and Muhammad Akhtar Izzat for their moral support. Other than that, I would like to say thank you for my lovely housemate, best friends, and friends for all the hardship that we have been together.

TABLE OF CONTENTS

ТАВ	BLE OF CONTENTS	PAGE x
LIST	T OF TABLES	XVV
LIST	T OF FIGURES	xviiii
LIST	T OF APPENDICES	XX
LIST	T OF SYMBOLS	xxi
LIST	T OF ABBREVIATIONS	xxiixii
CIL		
СНА	APTER 1 INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scopes of Project	3
1.5	Thesis Outline	3
CIL		-
CHA	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Substrate Integrated Waveguide (SIW)	5
2.3	Types of Filter	6
2.4	Application for SIW filter	7

Х

2.5	Basic	properties of filter	8
	2.5.1	Insertion Loss	8
	2.5.2	Return Loss	9
	2.5.3	Bandwidth and fractional bandwidth	9
2.6	Previo	us Research on Substrate Integrated Waveguide (SIW)	10
	2.6.1	Miniaturized Dual-Band SIW Filters Using E-Shaped Slotlines with	
		Controllable Center Frequencies	10
	2.6.2	Design of Milimeter_Wave Bandpass Filter Using Electric Coupling	
		of Substrate Integrated Waveguide (SIW)	12
	2.6.3	Narrowband Substrate Integrated Waveguide Bandpass Filter With	
		High Selectivity	14
	2.6.4	Novel Defected Ground Structure and Two-Slide Loading Scheme for	•
		Miniaturized Dual-Band SIW Bandpass Filter Design	15
	2.6.5	A Novel Miniature Single-Layer Eigth-Mode SIW Filter With	
		Improved Out-of-Band Rejection	16
	2.6.6	A Substrate Integrated Waveguide Bandpass Filter Using Novel	
		Defected Ground Structure Shape	17
	2.6.7	Substrate Integrated Waveguide with Tapered Electromagnetic	
		Bandgap Structures for Bandpass Filter Design	19
	2.6.8	Design of a Substrate Integrated Waveguide Bandstop Filter using	
		Dual-Radial Cavity Resonator	21

	2.6.9 Design and Analysis of SIW Bandstop Filter for Interference	
	Suppression in X Band	22
	2.6.10 Design of Wheel Shaped SIW Antenna using Subsrate Integrate	
	Circuits for Radar Applications	25
2.7	Comparison between Previous Projects	28
	2.7 Summary of comparison between previous research journals	30
CHAF	PTER 3 METHODOLOGY	31
3.1	Introduction	31
3.2	Methodology Process	31
3.3	Project Execution	32
	3.3.1 Literature Review	32
	3.3.2 Circuit Design and Simulation	32
	3.3.3 Analyze the Preformance	32
	3.3.4 Documentation	33
3.4	Flowchart Represent Process of Project	34
3.5	Design specification	35
3.6	Filter structure	35
	3.6.1 Proposed substrate integrated waveguide (SIW) filter	35
	3.6.2 SIW BPF parameter	37
	3.6.3 Patch and slot	38
	3.6.4 Substrate	38

3.7	Software development	39
СНА	PTER 4 RESULT AND DISCUSSION	40
4.1	Introduction	40
4.2	Result and analysis	40
	4.2.1 Frequency response	40
	4.2.2 Band pass filter	41
	4.2.3 Center frequency, <i>fc</i>	42
	4.2.4 Bandwidth and fractional bandwidth	42
	4.2.5 Return loss (RL)	43
	4.2.6 Insertion loss	44
4.3	Parametric study	45
	4.3.1 Effect of feed line	45
	4.3.1.1 Length of feed line, <i>h</i>	45
	4.3.1.2 Width of feed line, w	46
	4.3.2 Effect of U-slotted shape	48
	4.3.2.1 Effect of the number of U-slot shape	48
	4.3.2.2 Length between two U shape slot, g	51
	4.3.2.3 Length of U shape slot, k	53
	4.3.3 Effect of additional via hole near U shape slot	54
4.4	Summary	57

CHAP	TER 5	CONCLUSION AND RECOMMENDATION	59
5.1	Conclusion		59

xiii

5.2	Recommendation	60
REF	TERENCES	61
APP	PENDIX	65

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Type of band and the percentage of FBW	10
Table 2.2:	The type of filter and the bandstop filter simulated result	23
Table 2.3:	The result for the six type of SIW resonators	24
Table 2.4:	Comparison between previous projects	28
Table 3.1:	Specification of Rogers 4350	35
Table 3.2:	List of parameter for SIW filter	38
Table 4.1:	Comparison for feed line between h and frequency response	
	value.	46
Table 4.2:	Comparison for feed line between <i>w</i> and frequency response	
	value.	47
Table 4.3:	Comparison between SIW BPF design and frequency response	e
	for effect of the number of U shape slot	48
Table 4.4:	Comparison between number of U shape slot, bandwidth,	
	return loss and resonate frequency	49
Table 4.5:	Comparison between g and frequency response value.	52
Table 4.6:	Comparison between k and frequency response value.	54
Table 4.7:	Comparison between SIW BPF design and frequency response	e
	for effect of additional Via hole near U shape slot	55
Table 4.8:	Comparison between number of via hole, bandwidth, return lo	SS

	and resonate frequency	56
Table 4.9:	Result for SIW BPF proposed	57

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	Basic SIW filter design	2
Figure 2.1:	Geometry of a SIW	6
Figure 2.2:	A basic depiction of the four major filter types	7
Figure 2.3:	Radar frequencies and electromagnetic spectrum	8
Figure 2.4:	Range of frequency bands	8
Figure 2.5:	Structure of the proposed filter A with two cavities	11
Figure 2.6:	Structure of the proposed filter B with one cavity	11
Figure 2.7:	Simulated (S2,1) with different lengths of (a) h4 and (b) h3	12
Figure 2.8:	Layout of proposed 140 GHz mmW BPF	13
Figure 2.9:	Predicted and measured frequency responses of the proposed mmW BPF: (a) Top-view photograph of the fabricated millimeter-wave BPF. (b), $ S_{21} $, $ S_{21} $ and R_r	13
Figure 2.10:	(a) Photograph and vector E-field distribution at midband frequency. (b) Measured and simulated response of the filter	14
Figure 2.11:	Photographs, simulated and measured S-parameters of the proposed filter	15
Figure 2.12:	Equivalent circuit, simulation, and measured wideband results of the filter	16
Figure 2.13:	Equivalent circuit, simulation, and measured results of the filte	er 17

Figure 2.14:	Configuration of proposed filter with three cascaded SIW- DGS cells	17
Figure 2.15:	Electric field distribution of proposed filter with three cascaded SIW-DGS cells	18
Figure 2.16:	Comparison of measured and simulated results	18
Figure 2.17:	Measured and simulated group delay of (S2, 1)	19
Figure 2.18:	Layouts of the proposed chirped and tapered (a) SIW BPF and (b) HMSIW BPF	20
Figure 2.19:	S-parameter of the proposed SIW filter	20
Figure 2.20:	S-parameter of the proposed HMSIW filter	21
Figure 2.21:	Configuration of the first and the second radial cavity resonator	21
Figure 2.22:	Frequency response of the first and the second radial cavity resonator	22
Figure 2.23:	Proposed antenna structure	26
Figure 2.24:	Simulation results of the wheel antenna	26
Figure 2.25:	VSWR of wheel antenna	26
Figure 2.26:	3D radiation pattern of wheel antenna	27
Figure 3.1:	Flowchart represent process of project	34
Figure 3.2:	SIW BPF structure	37
Figure 3.3:	Rogers 4350 substrate in ADS software library	38
Figure 3.4:	Icon of Agilent Advance Design System (ADS) software	39
Figure 4.1:	Frequency response of proposed SIW BPF	41
Figure 4.2:	Insertion loss S(2,1) of proposed SIW BPF	41

Figure 4.3:	Frequency response show the value of return loss $S(1,1)$ is	
	smaller than -10.5dB of proposed SIW BPF	44
Figure 4.4:	Frequency response show the value of insertion loss $S(2,1)$ is	
	bigger than -0.426dB of proposed SIW BPF	44
Figure 4.5:	Feed line length, w and h	45
Figure 4.6:	Frequency response for <i>h</i> equal to 1.8mm, 2.2mm and 2.6mm	45
Figure 4.7:	Return loss and insertion loss for <i>w</i> equal to 2.8mm, 3.0mm,	
	3.2mm and 3.4mm	47
Figure 4.8:	Frequency response for design 1, design 2, design 3 and	
	design 4 for study the effect of number for U shape slot	50
Figure 4.9:	SIW BPF that show the length between two U shape slot, g	51
Figure 4.10:	Frequency response when length between two U shape slot,	
	g are 0.8mm, 1.6mm, 1.8mm and 2.0mm	52
Figure 4.11:	SIW BPF that show the length of U shape slot, k	53
Figure 4.12:	Frequency response when length of U shape slot, k are 2.2mm,	
	2.6mm, 3.0mm and 3.4mm	54
Figure 4.13:	Frequency response for effect of additional Via hole near	
	U shape slot	56

xix

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Gant chart for PSM 1	41
Appendix 2	Gant chart for PSM 2	41

LIST OF SYMBOLS

G	-	Giga
Hz	-	Hertz
Mm	-	Milimeter
W	-	Width
d	-	Diameter of Metalized Via Hole
Weff	-	Width of Rectangular Waveguide
R	-	Resistor
С	-	Capacitor
L	-	Inductor
h	-	Height
mmW	-	Milimeter-wave
dB	-	Decibel
5 G	-	5 Generation
3D	-	3 Dimension
S(2,1)	-	Insertion loss
S(1,1)	-	Return loss
Q	-	Quality factor
K	-	Coupling constant

LIST OF ABBREVIATIONS

SIW	Substrate Integrated Waveguide	
РСВ	Printed Circuit Board	
EM	Electromagnetic	
DGS	Defected Ground Structure	
SRR	Split Ring Resonator	
ADS	Advance Design System	
RF	Radio Frequency	
BPF	Bandpass Filter	
HMBPF	Half Mode Bandpass Filter	
TZs	Transmission zeros	
TEBG	Tapered Electromagnetic Bandgap	
ІоТ	Internet of Thinking	
UWB	Ultra wideband	
FBW	Fractional bandwidth	
MMR	Multimode resonator	
HFSS	High frequency structure simulator	
VSWR	Voltage standing wave ratio	

xxii

CHAPTER 1

INTRODUCTION

1.1 Project Background

First proposed in the late 1990s as a post-wall waveguide (J. Hirokawa and M. Ando 1998) or laminated waveguide (U. Hiroshi et al, 1998) for feeding networks in antenna arrays, Substrate Integrated Waveguide (SIW) technology was applied to multiple microwave and millimeter wave components, including post filters (D. Deslandes and K. Wu 2003), cavity filters (H. J. Tang et al, 2005), directional couplers (J.-X. Chen et al, 2006), oscillators (Y. Cassivi and K.Wu 2003), slot panel antennas (L. Yan et al, 2004), six-port circuits (X. Xu, 2005), and circulators (W. D'Orazio and K. Wu 2006). To transmit electromagnetic waves, Substrate Integrated Waveguides (SIW) is used. SIW are planar structures that belong to the Integrated Circuits Substrate family. They can be fabricated on planar circuits such as Printed Circuit Boards (PCB) due to their planar nature and can be integrated with other planar transmission lines such as microstrip. They retain the low loss properties of their conventional metallic waveguides and are widely used as interconnections in high-speed circuits, filters, directional couplers, antennas. The SIW consists of two linear metallic connected with a height of h via dielectric substrate. Through arrays, these metallic contain the electromagnetic fields within the SIW (A. Nasri et al, 2014). This emerging guided-wave structure can be made by means of a pair of periodic metalized arrays or slot trenches and looks like two parallel fences with a specific spacing in which EM waves are well confined, as shown in Figure 2.1.1 (Xiao-Ping Chen and Ke Wu 2014). As a filter application, the SIW method can also be integrated and arranged to improve filter performance with other methods such as DGS and SRR. In (Shen et al, 2011).

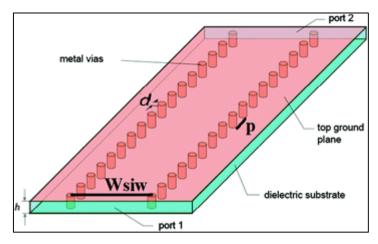


Figure 1.1: Basic SIW filter design

1.2 Problem Statement

Telecommunications is a significant thing in our regular lives in this fresh age of globalization. Telecommunication is the transmission of signs, signals, messages, words, writings, images and sounds or information of any kind by wire radio, optical or other electromagnetic systems. The signal loss always happens when the signal and frequency method is transmitted. The technology is now advancing in telecommunications for radio frequency techniques to reduce signal loss. The microstrip is a element for transmitting the signal that builds in with antenna. Microstrip is a sort of electrical transmission line that can be produced using technology of printed circuit board and used to transmit microwave frequency signals (C. Baranwal, 2017). It consists of a conducting strip separated by a dielectric layer called the substratum from a ground plane. The microstrip was discovered to have reduced energy processing and greater radiation loss. But there is another component that transmits frequency signals much faster and better than microstrip. It is Substrate Integrated Waveguide (SIW). SIW technology is an emerging approach to microwave and millimeter wave components and wireless systems being implemented and integrated. This component is much better from microstrip with greater energy processing capacities and reduced radiation losses (M. Bozzi, 2012). Other than that, by using SIW, the size of the substrate will be small and compact. SIW technique is thus used in this project to develop the bandpass filter that will operate at 12GHz. The range for the X band is 8 until 12 GHz while Ku band is 12GHz until 18GH, 12 GHz lies between X band and Ku band.