

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF REMOTE TERMINAL UNIT (RTU) FOR POWER QUALITY MONITORING SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical and Electronic Engineering Technology (Industrial Power) with Honours.

by

NURUL SYAHFIQAH BINTI ABD RASHID B071610554 970602-01-6550

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of Remote Terminal Unit (RTU) for Power Quality Monitoring System

Sesi Pengajian: SEMESTER 1 2019/20

Saya NURUL SYAHFIQAH BINTI ABD RASHID mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
	SULIT*	kepentingan M	alaysia seba	gaiman	a yang term	aktub dalam A	KTA
	SULIT	RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat 7	TERHA	D yang te	lah ditentukan	oleh
	TERIAD	organisasi/bada	an di mana p	enyelid	likan dijalaı	nkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang benar,		Disa	Disahkan oleh penyelia:				
NURI	JL SYAHFIQA	AH BINTI ABD					
RASHID		AHI	AHMAD IDIL BIN ABDUL RAHMAN				
Alamat Tetap:		Сор	Cop Rasmi Penyelia				
NO 1,	NO 1, JALAN PUTERI 2/1,						
PUTERI PARK,81800,							
ULU TIRAM, JOHOR							

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled Development of Remote Terminal Unit (RTU) for Power Quality Monitoring System is the results of my own research except as cited in references.

Signature:	
Author:	NURUL SYAHFIQAH BINTI ABD
	RASHID

Date:

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	AHMAD IDIL BIN ABDUL RAHMAN

Signature:	
Co-supervisor:	JOHAR AKHBAR BIN MOHAMMAT

GANI

ABSTRAK

Projek ini memperkenalkan reka bentuk dan pembangunan Unit Pemantauan Jarak Jauh (RTU) kos rendah untuk sistem pemantauan kualiti kuasa bagi meningkatkan kebolehpercayaan kuasa antara pengguna. RTU memainkan peranan penting dalam mengesan kesalahan dan ditugaskan untuk menghantar mesej dengan segera ke bilik kawalan. RTU menyediakan pemantauan operasi kesalahan dan pengumpulan data untuk analisis. Reka bentuk projek ini akan memberi tumpuan kepada membangunkan satu set model asas yang komprehensif untuk mensimulasikan voltan lendut menggunakan MATHLAB/Simulink. Microchip akan diprogramkan kepada beberapa jenis kesalahan khusus untuk keadaan voltan lendut apabila ia menerima data dari MATHLAB/Simulink. Selepas itu, status kesalahan tersebut akn dipaparkan dalam paparan LCD dan Wi-Fi akan menghantar maklumat tersebut ke bilik kawalan untuk meberi amaran kepada pekerja akan keadaan semasa melalui Paparan Grafik (GUI). Akhirnya, sistem ini dapat mengesan sama ada voltan lendut atau voltan biasa dan masa ketika voltan lendut itu bermula dan tamat, malah ia akan bersedia untuk dihubungkan dengan Unit Pemantauan Jarak Jauh yang lengkap.

ABSTRACT

This project introduces the design and development of a low-cost Remote Terminal Unit (RTU) for power quality monitoring system to increase the reliability of power among the consumers. The RTU plays an important role in detecting faults and assigned it by sending message to control room instead. The RTU provides monitoring fault operation and data collection for analysis. The design of this project will be aimed on developing a set of basic models to simulate a voltage sag using MATHLAB/Simulink. The microchip will be programmed to a specific type of fault for voltage sag condition when it receives data from the MATHLAB/Simulink. After that, the status will be appeared on the LCD display and Wi-Fi Module will send the information directly to control room as warning the operators on the current situation via Graphical User Interface (GUI). Finally, the system is able to detect the voltage sag or normal voltage and the starting and ending time of the voltage sag occurred, thus ready to be interfaced with the complete Remote Terminal Unit (RTU).

DEDICATION

To my beloved parents

Abd Rashid Bin Bambok

Rahayu Binti Osman

Sibling

Nurul Syahidah Binti Abd Rashid

Muhammad Zafran Aqil Bin Abd Rashid

Nurul Syafinaz Hawa Binti Abd Rashid

Supervisor

Mr. Ahmad Idil bin Abdul Rahman

Co-Supervisor

Mr. Johar Akbar bin Mohamat Gani

Thank you very much for the support, support, love, encouragement, help and blessing

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to praise ALLAH S.W.T for His blessing. He gave me physical and mental strength to carry on my final year project up to completion.

I would to say thanks to my supervisor, Mr. Ahmad Idil bin Abdul Rahman for his supervision, encouragement, guidance, advice and unfailing patience through the duration of the project and also not to forget my co-supervisor Mr. Johar Akbar bin Mohamat Gani who also give a guidance to me for completing this project.

Last but not least, I would like to express my deepest and grateful to my family, especially my parent for giving me their full support, understanding and patience. Without their support, I would not have been able to finish my bachelor degree project. They give a support and lovely companionship; these are my important source strength for me.

TABLE OF CONTENTS

		PAGE
TAB	BLE OF CONTENTS	X
LIST	Г OF TABLES	XV
LIST	Г OF FIGURES	xvi
LIST	Γ OF APPENDICES	xix
LIST	Г OF SYMBOLS	xx
LIST	Γ OF ABBREVIATIONS	xxi
сца	APTER 1 INTRODUCTION	1
СНА	AFTER I INTRODUCTION	1
1.0	Introduction	1
1.1	Project Background	1
1.2	Problem Statement	6
1.3	Objectives	8
1.4	Scope	9
1.5	Report Outline	10
CHA	APTER 2 LITERATURE REVIEW	11
2.0	Introduction	11
2.1	Power Quality	12
	2.1.1 Power Quality Issues	12

Х

	2.1.2 Voltage Sag	16
	2.1.2.1 Voltage Sag Types	18
	2.1.2.2 Factors That Affect the Type of Voltage Sag	21
	2.1.3 Wavelet	23
	2.1.3.1 Families of Wavelets	23
	2.1.3.2 Wavelets Properties	24
	2.1.3.3 Equation for DWT and CWT	25
	2.1.3.4 Mother wavelet choice	26
2.2	Past and Current Trends in RTU Development	27
2.3	Power Quality Monitoring in Distribution Automation System	30
2.4	Proteus 8 Professional	32
2.5	MATHLAB/Simulink	33
2.6	Wi-Fi Module	
2.7	Summary	
CHAI	PTER 3 METHODOLOGY	38
3.0	Introduction	38
3.1	Hardware Development	41
	3.1.1 Power Supply Unit	43
	3.1.2 Arduino UNO Main Board	44
	3.1.3 Analog Inputs of Arduino UNO	45

xi

	3.1.4 Digital Inputs of Arduino UNO	45
	3.1.5 Digital Outputs Arduino UNO	46
	3.1.6 Wi-Fi Module	46
3.2	Software Development	48
	3.2.1 Proteus 8 Design Suite Software	49
	3.2.2 MATLAB/Simulink	51
	3.2.2.1 MATLAB/Simulink Design Procedure	53
	3.2.2.2 MATLAB coding Construction	62
	3.2.3 Arduino IDE Software	70
	3.2.3.1 Blynk app coding	71
3.3	Summary	73
CILA	PTER 4 RESULT AND DISCUSSION	74
CHAI	TER 4 RESULT AND DISCUSSION	/4
4.0	Introduction	74
4.1	Project's Input Result	74
4.2	Specifications of RTU System	76
4.3	Software Development	77
4.4	The overall of RTU System	77
4.5	Fault Detection	78
4.6	Analysis of the Optimum Method	81
4.7	Summary	87

СНАР	TER 5 CONCLUSION	88
5.0	Summary	88
5.1	Attainment of the Project Outcomes	90
5.2	Application of the Project Outcomes	91
5.3	Difficulties Encountered during Project Execution	92
5.4	Recommendations for Project Future Improvement	93

- **REFERENCES** 94
- APPENDIX 98
- Overview 100
- Summary 101
- Power 102
- Memory 103
- Input and Output 104
- Communication 105
- Programming 106

xiii

Automatic (Software) Reset	107
Wemos D1 Release 1 (R1) and Release 2 (R2)	109
R1 vs. R2 - The Difference	109
Settings in Arduino IDE (v1.8.7):	109
Table 1.0 – Gantt chart PSM 1	113
Table 2.0 – Gantt chart PSM 2	114

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Classifica	ation and typical event characteristic	13
Table 2.2:Voltage Sa	ag Types	20
Table 2.3:Transform	ner Winding Connection	22
Table 3.1: ABC Arra	angement for Sag Vectors	52
Table 3.2: Classifica Substation A	ation of Output in Voltage Phases with cor	rresponding type at 65
Table 4.1: Specificat	tion detail Of the RTU system for the proj	ject 76
Table 4.2: Comparis	son of the Window Length Testing	86

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1 .1(a): Vo	oltage Sag Waveform (Rufus, 2012)	4
Figure 1.1(b): Wa	welet Waveform (Wee & Liang, 2008).	5
Figure 2.1: Norma	l Voltage Waveform	14
Figure 2.2: Voltag	e Sag Waveform	14
Figure 2.3: ABC	Classifications for Voltage Sag (Namrata, 2014)	19
Figure 2.4: Famili	ies of wavelet that used for analysis (Shariatinasab et al.)	24
Figure 2.5: Analys	sis of DWT signal (Patil & Sheelavant, 2015)	26
Figure 2.6: The Bl	ock Diagram of R.T.U (Matti & Aziz, 2012)	29
Figure 2.7: ISIS8	Professional	32
Figure 2.8: MATL	AB/Simulink	33
Figure 2.9: Wi-Fi	Module – ESP8266	34
Figure 2.10: Mode	e of operation Wi-Fi Module	36
Figure 3.1:Project	Development Flowchart	39
Figure 3.2: The R ⁷	ΓU System framework via the Wi-Fi Module	42
Figure 3.3: Arduir	o UNO board with configuration pins labelling	44
Figure 3.4: Wi-Fi	Module Configuration Pins	46

xvi

Figure 3.5: Wi-Fi Module Interfacing with the Arduino Uno Board	47
Figure 3.6: Software Development Block Diagram	48
Figure 3.7: Proteus 8 Software interface	49
Figure 3.8: Schematic Circuit of Arduino UNO board and Wi-Fi module using the Proteus Software	50
Figure 3.10: Command window interface of MATLAB software	54
Figure 3.11: Simulink Icon to Open Simulink in MATLAB	55
Figure 3.12: Simulink Library Browser interface	55
Figure 3.13: Design of Simulink Model for the project	56
Figure 3.14: Desired output from the MATLAB/Simulink after running the Simulink model	57
Figure 3.15: Simulink model for setting of 2-phase fault	58
Figure 3.16: Output of 2- phase setting	59
Figure 3.17: Simulink model for setting of 1-phase fault	59
Figure 3.18: Output of 1-phase setting	60
Figure 3.19: Simulink model for setting of 3-phase fault	60
Figure 3.20: Output of 3-phase setting	60
Figure 3.21: Value of workspace for sag time values when produced	61
Figure 3.22: The pop-up window when the MATLAB is launched and opened	62
Figure 3.23: Sample on how the folder is created in MATLAB	63
Figure 3.24: Editor Space for Writing the MATLAB programming codes	63

xvii

Figure 3.25: MATHLAB coding for the RTU Signal	64
Figure 3.26: Output waveform produced for 3-phaase fault setting at substation A	66
Figure 3.27: Output waveform produced for 2-phase fault setting at substation A	67
Figure 3.28: Output waveform produced for 1-phase fault setting at substation A	68
Figure 3.29: Input of RTU system	69
Figure 3.30: Arduino Software (IDE) interface window when opened and launched	70
Figure 3.31: The windows display after the Arduino icon is launched	71
Figure 3.32: Coding of the projets that implements each type of faults	72
Figure 3.33: Coding for text message and notification of the faults occured	73
Figure 4.1: Sketch for Output Normal Waveform	74
Figure 4.2: The Fault Box and RCL Box setting in MATLAB	75
Figure 4.3: The Normal Voltage output for line-line-line-ground selection type	75
Figure 4.4: MATLAB GUI for selected fault testing	79
Figure 4.5: Simulink connection diagram for 1-phase fault condition testing	79
Figure 4.6: LCD display on Blynk app for 2-phase fault type	80
Figure 4.7: Sag waveform of the analyzed signal	82
Figure 4.8: Produced wavelet waveform when using the first derivative method	83
Figure 4.9: Sag waveform of the analyzed signal	84
Figure 4.10: Produced wavelet waveform when using the second derivative method	85

xviii

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix 1	Arduino UNO		98
Appendix 2	Gantt Chart		84

xix

LIST OF SYMBOLS

I/O	-	Input/output
Kv	-	kilovolt
Pu	-	Per Unit
ψ(t)	-	Continuous Function in Both Time Domain
W	-	Angular velocity
X	-	Displacement
Z	-	Height
Q	-	Angle
ms	-	milisecond
S	-	Second
%	-	percent
mV	-	miliVolt

V - Volt

XX

LIST OF ABBREVIATIONS

GUI	Graphical User Interface		
DAS	Distribution Automaton System		
IEEE	Institute of Electrical and Electronics Engineers		
PIC	Peripheral Interface Controller		
PQM	Power Quality Monitoring		
RMS	Root Mean Square		
RTU	Remote Terminal Unit		
SCADA	Supervisory Control and Data Acquisition		
GSM	Global System for Mobile Communication		
LG	Line-to-Ground		
LLG	Line-Line-to-Ground		
LLLG	Line-Line-to-Ground		
VRMS	Voltage Root Mean Square		
CWT	Continuous Wavelet Transform		
TNB	Tenaga Nasional Berhad		

xxi

CHAPTER 1

INTRODUCTION

1.0 Introduction

This part will describe further about the project background, problem statement, objectives, scope of project and expected results for this RTU project, in brief.

1.1 Project Background

Nowadays, the electrical power systems are very vital among the users due to high request of power usage. Electrical power system has many important parts which are the generation, transmission, distribution and load (consumers). This electrical power system has a standardized network that supply power to the area. As a pioneer of the National Grid in Peninsular Malaysia, Tenaga Nasional Berhad (TNB) designated two sort of voltage level networks in electrical power system. Retrieved from (https://www.tnb.com.my/assets/files/ESAHv3.pdf), for transmission grid voltage, the rates are 500kV, 275kV and 132kV while the distribution voltage are rated at 33kV, 11kV and 400/230V respectively.

1

In the electrical distribution system, too much failure had occurred until the Distribution Automation System (DAS) was introduced. According to (Parikh, 2009), The Distribution Automation System (DAS) is a system that enables an electrical utility to monitor, coordinate, and operate distribution components in a real-time mode from remote locations. (Razak, 2014) studied that DAS is also known as an electrical part on the distribution stage that can run automatically within the system that contain of electrical components or mechanisms on that distribution stage which function consequently at lower voltage level. Among many functions of DAS is to track down the faults position, dissociate faults and recover back the supply services area to the consumer. The DAS can upgrade effectiveness, reliability and grade of electric service with respect to the application of the utilities. The improved technology in DAS and the automation application enables to naturally observing, maintaining and controlling the switches of the framework where it very well can be practiced through the intelligent electronic devices (IED).

Remote Terminal Unit (RTU) is the one of the vital tools for execution for DAS where it essentially acts as a remote that enables checking and controlling of the substations. Besides that, the RTU plays an imperative act in authorizing the operators at the control center area to deal with and run the distribution system. The measured electrical variables will be determined by the RTU at the distribution system. (Jusoh, 2013) discussed that at remote locations, the collected information from the process equipment will shift back to the focal unit in order to identify the data status. This remote terminal unit can interpret the information in three states which are in analog input, digital (status input) and digital (control outputs). The RTU's information that converge in electrical parameters are the Root Mean Square (RMS) value of voltage and current, frequency, temperature and power.

In this RTU project, generally the tested fault happens at the Three Phases to Ground Fault (L-L-L-G), Single Line to Ground (L-G) and Double Line to Ground (L-L-G) fault. All this type of faults is caused by the voltage sag disturbances. In order to ensure good quality of electrical facilities, the RTU is utilized to control and track the power quality disruption when faults happened. The power quality is an electrical system that forms a stable and clear energy. Furthermore, power quality always accessible in a pure noise-free sinusoidal waveform and it always operated at standard frequency position and voltage level. However, many loads will appoint to these disturbances with the expand of energy request from industrial operation, retrieved from (http://www.comsys.se/solutions/powerquality.html).