T58.64 .M74 2019

اونيونرسيني تيكنيكل مليسياً ملاك المالات الما

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EMBEDDED SYSTEM FOR FLEET MANAGEMENT SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Industrial Electronic) with Honours.

by

MUHAMAD SHAFIQ BIN ZAHURIN B071610343 941108-14-5725

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Embedded System for Fleet Management System			
Sesi Pengajian: 2019			
Saya MUHAMAD SHAFIQ BIN ZAHURIN mengaku membenarkan Laporan PSM ini			
disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-			
syarat kegunaan seperti berikut:			
1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.			
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan			
untuk tujuan pengajian sahaja dengan izin penulis.			
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran			
antara institusi pengajian tinggi.			
4. **Sila tandakan (X)			
Mengandungi maklumat yang berdarjah keselamatan atau			
SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA			
RAHSIA RASMI 1972.			

	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh		
		organisasi/badan di	mana penyelidikan dijalankan.	
\boxtimes	TIDAK			
	TERHAD			
Yang	benar,		Disahkan oleh penyelia:	
	Sunt.		lilligh	
MUH	AMAD SHAF	IQ BIN ZAHURIN	TS. SHAHRIZAL BIN SAAT	
Alama	at Tetap:		Cop Rasmi Penyelia	
No. 39	9, Jalan Taman	Garing Jaya 8,	'Is. Shahrizal bin saat	
Taman Garing Jaya,			Pensyarah Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikai Malaysia Melaka	
48000 Rawang,				
Selang	gor.			
Tarikh	ı: 15/1/209	PĐ	Tarikh: 16/01/2020	

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled Embedded System for Fleet Management System is the results of my own research except as cited in references.

Signature:

Author: MUHAMAD SHAFIQ BIN ZAHURIN

Date: 15/1/2020

APPROVAL

This report is submitted to the Faculty of Electric and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Industrial Electronic) with Honours. The member of the supervisory is as follow:

Signature:

Supervisor:

-

TS. SHAHRIZAL BIN SAAT

Signature:

Co-supervisor:

EN. NOOR MOHD ARIFF BIN BRAHIN

ABSTRAK

Pada masa kini pengangkutan merupakan salah satu kaedah yang paling penting yang digunakan oleh masyarakat. Salah satu permasalahan adalah daripada mereka dari segi menguruskan saman saman kepada pemandu terutama syarikat yang memjadikan trak, bas serta kereta sebagai salah satu platform pengankutan mereka. Tujuan projek ini adalah untuk mewujudkan data penyimpanan maklumat dengan tujuan memantau pergerakan kenderaan dan mencatat kelajuan kenderaan. Sistem yang berkenaan melibatkan penggunaan teknologi Global Positioning System (GPS) untuk mengesan lokasi kenderaan. Di samping itu, data maklumat dalam koordinat disimpan menggunakan kad SD. Sistem ini juga dilengkapi dengan had kelajuan kenderaan dan menyimpan maklumat sebagai bukti bahawa mereka memandu melebihi had kelajuan yang ditetapkan. Arduino Mega digunakan dalam kajian ini untuk mengawal data keluar masuk setiap peranti. Akhirnya, dengan adanya sistem ini, ia dapat membantu serba sedikit dalam mengesan dan menyimpan maklumat jikalau pemandu memandu di luar had laju yang ditetapkan.

ABSTRACT

Nowadays transportation is one of the most important methods used by humans. One of them is in terms of managing suit summons to drivers especially companies that make trucks, buses as well as cars as one of their shipping platforms. The purpose of this project is to create information storage with the aim of monitoring the movement of vehicles and to record the speed of the vehicle. The applicable system involves the use of the Global Positioning System (GPS) technology to track the location of the vehicle. In addition, the coordinate information storage medium is stored using SD card. The system is also equipped with the speed limit of the vehicle and storing information as evidence that they are driving beyond the specified speed limit. Arduino Mega is used in this study to control the output and input of each device. Finally, with the existence of this system, it can help a little bit in detecting and storing information while driving beyond speed limit.

DEDICATION

First of all, I would like to thank you almighty god Allah S.W.T for guide me in finish this project. Biggest appreciation to my parents for give unlimited support all the time to finished my project

ACKNOWLEDGEMENTS

Dedication and thankful to my supervisor Ts. Shahrizal bin Saat for guide me in complete this project from last semester. Support is given from various sources such as knowledge, inspiration and motivation in accomplished this project. Other than that, biggest grateful to my parents for keep support me from the back towards this project.

Support from family members and friend, Muhammad Azri, Raja Ahmad Hamezan and Nizar Fikri will not forget for support and lend me a hand during complete this project. Last but not least, to all person that support me until finished this project. Spirit words in help me throughout this things is really helpful.

TABLE OF CONTENTS

		PAGE
TAE	BLE OF CONTENTS	X
LIST	T OF TABLES	xiv
LIST	T OF FIGURES	xv
LIST	T OF APPENDICES	xviii
LIST	T OF SYMBOLS	xix
LIST	T OF ABBREVIATIONS	XX
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background	1
1.3	Problem Statement	3
1.4	Objective	5
1.5	Scope	5
1.6	Organization	5
CHA	APTER 2 LITERATURE REVIEW	7
2.1	Introduction	7
2.2	History of fleet management system	7
2.3	Previous development of fleet management system	8

2.3.1		Design and implementation of vehicle tracking system using	
		GPS/GSM/GPRS technology and smartphone application.	8
2.3.2		Internet of Things based vehicle monitoring system	10
2.3.3		Smart Fleet Monitoring System using internet of things (IoT)	13
2.3.4		Design and Implementation of a Wireless OBD II Fleet Management	
		System.	15
2.3.5		IoT Based Smart School Bus Monitoring and Notification System.	17
2.3.6		Real Time Vehicle Fleet Management and Security System.	19
2.3.7		Real Time Vehicle Monitoring and Tracking System based on Ember	lded
		Linux Board and Android application.	22
2.3.8		Multi-Service Bus-sharing system for private fleets.	24
2.3.9		Real Time Vehicle Tracking System Based on ARM7 GPS and GSM	
		Technology.	27
2.3.10		Design and Implementation of Real Time Vehicle Monitoring, Track	ing
		and Controlling System.	30
2.4	Comp	arison of tracking device used	32
2.5	Summ	ary	33
CHAI	PTER 3	METHODOLOGY	35
3.1	Introd	uction	35
2.2	Droico	t Work Flow	3.4

3.2.1	Planning	36
3.2.2	Research and Data Collection	38
3.2.3	System Operation Flow Chart	39
3.3	Block Diagram System	40
3.4	Hardware Selection	42
3.4.1	Arduino Mega 2560	42
3.4.2	Ublox Neo-6M GPS module	43
3.4.3	Planetary DC Geared motor with encoder	43
3.4.4	Liquid Crystal Display (LCD)	44
3.4.5	SD Card module	45
3.4.6	Real Time Clock (RTC)	46
3.4.7	Motor Driver	47
~ YY 4 Y	PTED 4 DECKIET AND DISCUSSION	40
CHAI	PTER 4 RESULT AND DISCUSSION	48
4.1	Introduction	48
4.2	Software Development	48
4.2.1	Arduino IDE	48
4.3	Hardware Development	49
4.3.1	Circuit design	50
4.3.2	Circuit construction	51
4.3.3	Circuit assemble	52
	xii	

4.4	Data Analysis	53
4.4.1	Coordinate Accuracy	53
4.4.2	Latency	57
4.5	Discussion	59
CHAI	PTER 5 60	
5.1	Introduction	60
5.2	Conclusion	60
5.3	Recommendation of Future Work	61
REFE	RENCES 63	
APPE	NDIX 65	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Latitude and Longitude (Mistary & Chile, 2016)	29
Table 2.2:	List of Tracking Device Used	32
Table 4.1:	Time taken of GPS	58

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	The number of vehicle public related to Rental Cars from June September 2018.	2014 to 4
Figure 2.1:	Block diagram of vehicle Tracking and Anti-theft system	10
Figure 2.2:	Proposed system for vehicle tracking/monitoring	12
Figure 2.3:	Data received from system hardware to the database on webserv	er 12
Figure 2.4:	System flowchart	14
Figure 2.5:	The Three Main subsystem	16
Figure 2.6:	The Functional Units of the Subsystems	17
Figure 2.7:	Block Diagram interaction between devices	19
Figure 2.8:	POSIX multithreads and major code blocks	21
Figure 2.9:	Server system block diagram	21
Figure 2.10:	System block diagram	23
Figure 2.11:	CSS Component	26
Figure 2.12:	MSS Component	26
Figure 2.13:	SOBU Component	27
Figure 2.14:	Transmitter Block Diagram	29

Figure 2.15:	Receiver Block Diagram	29
Figure 2.16:	Block Diagram of system	31
Figure 3.1:	Project Workflow	
Figure 3.2:	Project Flow Chart	36 37
Figure 3.3:	System operation flowchart	40
Figure 3.4:	Block diagram of Fleet Management System.	41
Figure 3.5:	Arduino Mega 2560	42
Figure 3.6:	Ublox Neo-6M GPS module	43
Figure 3.7:	DC Geared motor	43
Figure 3.8:	Liquid Crystal Display (LCD)	44
Figure 3.9:	SD card module for Arduino	. 45
Figure 3.10:	RTC DS1307	46
Figure 4.1:	Arduino IDE software.	49
Figure 4.2:	Circuit design	50
Figure 4.3:	PCB layout	51
Figure 4.4:	Assemble circuit	52
Figure 4.5:	Complete project product	53
Figure 4.6:	Location at FTK building (9.63 Meter)	54
Figure 4.7:	Location at residential area (13.84 Meter)	54
	xvi	

Figure 4.8:	Location at MBMB Field (9.66 Meter)	55
Figure 4.9:	Location at building area (120.61 Meter)	55
Figure 4.10:	Pin point location of moving vehicle exceeding speed limit.	56
Figure 4.11:	Graph for number of attempts versus time	58

xvii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1: Gantt Chart flow PSM 1		65
Appendix 2: Gantt chart progress PSM 2		66

xviii

LIST OF SYMBOLS

m meter

Km/H - Kilometer per hour

RPM Revolution per minutes

LIST OF ABBREVIATIONS

FMS Fleet Management System

AES Automated Enforcement System

GPS Global Positioning System

GPRS General Packet Radio Service

IoT Internet of Things

RFID Radio Frequency Identification

OBD On-board Diagnostic

SOBU Shuttle On-board Unit

MSS Mobile Shuttle System

CSS Central Shuttle System

IDE Integrated Development Environment

RTC Real Time Clock

LCD Liquid Crystal Display

SD Secure Digital

IDE Integrated Development Environment

CHAPTER 1

INTRODUCTION

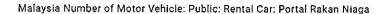
1.1 Introduction

The fleet management system is one of the famous transportation tracking method for certain company especially that handle on courier service field. This Fleet Management System can be a lorry, bus, taxi and also car. The system was introduce and developed in create a new method that not only covered on tracking the vehicle location, but also involve of speed management, fuel consumption, schedule of the vehicle and also maintenance. There was certain issues that occur towards the courier company such as accident, summon issues and etc. Drive exceeding the speed limit is one of the problem faced by Courier Company related to summon issues. If this problem persists, it can lead to losses of a company because it has to pay the summons for a third party. This summon issues of speed limit could be related to company handling a small vehicle such as Car Rental company. Be that as it may, summon issues related to drive the cars exceeding the speed limit towards car rental's owner is a major problem towards no system that will record if the user drives over the speed limit.

1.2 Background

In present-day development, transportation is one of the key systems used to move from one place to another. Various type of system is design and create by a human in providing a better experience in the transportation system and one

of the examples is Fleet Management System. This system was developed based on database and also GPS tracking system. Create or develop a system must have its own benefit and advantage towards the user. Benefit that cover up in this system such as tracking a lost vehicle and prevent delays on delivery especially to Courier Company. This system covers on vehicle maintenance, speed management, fuel consumption and also a schedule of the vehicle.


All this cover method will ensure to have a better economical transportation system in efficiency and also reduce on costing about vehicle investment. This fleet management system consist of GPS and Wi-Fi system in tracking and send data from the vehicle to database provided by the company. Usually, location determines by GPS system are send in coordinate's form that contain of latitude and longitude. Vehicle investment can be reduced by first knowing the distance of a vehicle travel in determining the millage of the vehicle for service. The vehicle service stated is like changing vehicle oil, tire replacement and also battery conversion.

The Fleet Management System involving many type of transportation platform system and one of it is land transportation system. Land transport systems are usually monopolized by cars. Therefore, cars can also be used as a business platform such as a car rental service. Under no circumstance, the car's rental company also will involve in a certain problem and one of them is about summoned issues towards the renters. Summons are also divided into several parts and one of them is summon for those drive exceeding speed limit. Global Positioning System (GPS) is a system that will track a real-time application in determine a certain value of the vehicle. In vehicle tracking systems, a vehicle

location is one of the most important components. The location and time information anywhere on earth is provided by using GPS technology (Muruganandham, 2010).

1.3 Problem Statement

Nowadays, the issue of summons to vehicles such as cars is increasingly resulting in changes in data obtained such as statistic value. Every business area usually has its own risk and the Fleet Management System are also involved in it. The mentioned risk is related to the summon issues towards the company involve in fleet system when the drivers drives exceeding the specified speed limit. The current system only stores information about the speed, vehicle maintenance, tracking method but no information if the drivers violates the law rules in speed limit. For example, if the drivers drive exceeding the speed limit and Automated Enforcement System (AES) has captured registration number of the vehicle, this summon will arrive at the company within 5 days. It's difficult for the company to track either summon is right or not in the many pack of data stored. It could be the data stored long because the summons letter was given to the company for a long time or not to receive for the company. This problem would be a huge burden to the company in paying the outstanding amount and could effect in losses than profit to the business.

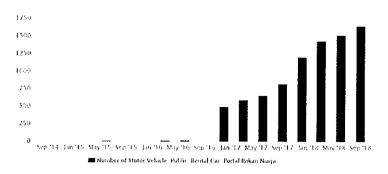


Figure 1.1: The number of vehicle public related to Rental Cars from June 2014 to September 2018. (Source: Portal Rakan Niaga 2018)

Figure 1.1 above shows one of the vehicle involved in FMS and it is a car rental company. The bar graph shows an increase in public vehicles in the scope of rental cars. In avoid from this problem occur, a new system in recorded data from renters and also from the vehicle is should and have to be careful about these issues. The current system in Fleet Management System used is record the information progress of the vehicle such as driver's name, type of vehicle, number plat, speed, and also condition of the vehicle. This system will keep the data in the current position and could be saved for long term condition, but it will not provide a real-time tracking position if the summon issues receive by the company. Lacks of the current system is vehicle courier company will problem the company in provide an evidence towards summon issues on drive exceeding speed limit.