

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF INTELLIGENT SWITCHING POWER STORAGE FOR DOMESTIC USAGE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

by

MOHD ZARUL AMIRUL BIN MOHD ALIP B071610957 950225-04-5285

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF INTELLIGENT SWITCHING POWER STORAGE FOR DOMESTIC USAGE

Sesi Pengajian: 2019

Saya **MOHD ZARUL AMIRUL BIN MOHD ALIP** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
		kepentingan M	alaysia seba	igaiman	a yang term	aktub dalam A	KTA
	SULI1*	RAHSIA RAS	MI 1972.				
	ΤΕΡΠΥΡ*	Mengandungi	maklumat '	ΓERHA	D yang tel	lah ditentukan	oleh
	I LKIIAD	organisasi/bada	an di mana j	penyelic	likan dijalaı	nkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang benar,		Dis	Disahkan oleh penyelia:				
MOHI	D ZARUL AMIF	RUL BIN MOHD	ALIP EN	AZHAN	N BIN ABD	UL RAHMAN	
Alamat Tetap:		Cop	Cop Rasmi Penyelia				
No. 22	2 Jalan Perawai	n 6,					
Tamai	n Bukit Ramba	i,					
75250 Melaka.							
Torikk	· ·		Tor	ibbo			
1 al 1KI	1.		1 מו.	INII.			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF INTELLIGENT SWITCHING POWER STORAGE FOR DOMESTIC USAGE is the results of my own research except as cited in references.

Signature:	
Author:	MOHD ZARUL AMIRUL BIN MOHD ALIP
Date:	16 December 2019

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	EN AZHAN BIN ABDUL RAHMAN

ABSTRAK

Sistem Penyimpanan Tenaga (ESS) adalah sistem yang menyimpan tenaga elektrik kemudian akan digunakan pada bila diperlukan. Di sesetengah negara, tarif elektrik domestik dikenakan caj untuk waktu puncak dan luar puncak. Sehingga, apabila masa puncak kenaikan tarif akan lebih tinggi daripada masa luar puncak. Seterusnya, apabila keadaan pemadaman kuasa berlaku, ia akan mengganggu pengguna dalam keadaan beban dalam talian. Kekurangan sistem ESS untuk pengguna domestik yang secara automatik mengawal pengecasan dan pengaliran secara automatik bekalan kuasa antara storan kuasa dan pembekal kuasa. Objektif projek ini adalah untuk menganalisis keupayaan ESS dari segi kuasa menyimpan, mengurus, dan menggunakan semula untuk beban penggunaan kuasa rendah dalam penggunaan domestik. Seterusnya, untuk mengawal keadaan bertukar dari bekalan TNB ke Bekalan Penyimpanan Kuasa Pintar apabila masa puncak, luar masa puncak dan gangguan elektrik. Sistem ini termasuk beberapa jenis litar elektronik yang merupakan penyearah, relay, pemasa, Arduino Uno dan meter elektrik sebagai pengukur dalam sistem ini. Sebagai hasilnya, beban dalam talian tidak terganggu oleh pemadaman kuasa dan bekalan kuasa rumah secara automatik bertukar antara penyimpanan kuasa ke bekalan TNB pada sistem OPTR. Akhirnya, kesimpulan untuk projek ini menunjukkan bagaimana sistem penukaran dan pengurusan storan tenaga untuk pengguna domestik kediaman digunakan dalam sistem OPTR dan apabila gangguan kuasa berlaku.

ABSTRACT

Energy Storage System (ESS) is a system that captures electrical energy then will be use at when needed. In a certain country, the domestic electrical tariff being charge for off-peak and on-peak tariff rate. So that, when the on-peak time the tariff will higher rather than the off-peak time. Next, when a power outage situation happens it will interrupt the user in online load situation. Lack of ESS system for domestic user which is automatically control charging and automatically flow of the power supply between power storage and power provider. Objective of this project is to analyse the ability of the ESS in terms of store power, manage, and reuse for low power consumption load in domestic usage. Next, to control the switching condition from TNB supply to the Intelligent Switching Power Storage Supply when peak time, off-peak time and power outage. The system will include a few types of electronics circuit which is a rectifier, relay, timer, Arduino Uno and electrical meter as the gauge in this system. As results, online load not interrupted by power outage and the house power supply automatically switch between power storage and TNB supply base on OPTR system. Lastly, the conclusion for this project to shows how the switching system and managing the storage of energy for the residential domestic user to use in OPTR system and when a power outage happens.

DEDICATION

To my beloved parents *Mohd Alip Bin Mohd Said* and *Roslinah Binti Mohammad Top*. Not forgotten my siblings *Mohd Zakuan, Mohd Abdullah, Siti Salwa, Mohd Akbalrizal, and Muhammad Sulaiman.*

viii

ACKNOWLEDGEMENTS

Praise to Allah S.W.T The Most Gracious and The Most Merciful for His Blessing granted me to finish the Final Year Project 2. First of all, I would like to take this opportunity to thank my supervisor, Mr. Azhan Bin Abdul Rahman for all the guidance and encouragement for me in completing my Final Year Project.

I would like to extend my thankfulness to the most cherished person in my life, my parents (Mohd Alip Bin Mohd Said and Roslinah Binti Mohammed Top) for all the moral support, financial and for never ending reminding me to always be responsible and trustworthy.

In addition, I would like to thank you all my friends for the helps and moral support during my studies in Universiti Teknikal Malaysia Melaka.

TABLE OF CONTENTS

			PAGE
TABLI	E OF CONT	ENTS	x-xiii
LIST C	OF TABLES		14
LIST C)F FIGURE	5	xv-xvii
LIST C	OF APPEND	ICES	18iii
LIST C	OF SYMBOI	_S	19x
LIST C	OF ABBREV	TATIONS	20
CHAP	FER 1	INTRODUCTION	Error! Bookmark not defined.
1.0	Background		Error! Bookmark not defined.
1.1	Problem Stat	ement	2
1.2	Objective		Error! Bookmark not defined.
1.3	Scope of Wo	rk	3
CHAP	FER 2	LITERATURE REVIEW	Error! Bookmark not defined.
2.0	Introduction		4
2.1	Background	Study	4
	2.1.1 Electr	rical Energy	4-5
	2.1.1.1 Electi	ricity Energy Storage	5
	2.1.1.2 Appli	cation of Energy Storage System	6

	2.1.2 Battery Storage	7
	2.1.2.1 Lead Acid Battery	7
	2.1.2.2 Lithium Ion Batteries	7-8
	2.1.2.3 Nickel Cadmium Battery	8
	2.1.2.4 Sodium Sulfur Battery	8-9
	2.1.3 Peak Shaving	10-11
	2.1.4 Load Levelling	11
	2.1.5 Micro Grid	11-12
	2.1.6 Off Peak Tariff Rate (OPTR)	12
2.2	Related Previous Project	13
	2.2.1 Powerwall	13
	2.2.1.1 System Layout	14
2.3	Summary of Literature Review	15

CHAI	PTER 3	METHODOLOGY	Error! Bookmark not defined.
3.0	Introd	uction	16
3.1	Flow	of the Progress Report	16-21
3.2	Softw	are Developtment	22
	3.2.1	Project Design Using Software	22
	3.2.2	Arduino Programming by Using Arduino	IDE 23

	3.2.3	Hardware Project Design Using SketchUP	2019 23-24
	3.2.4	Voltage Divider Design by Using NI MUlt	isim 25
	3.2.5	Design Connection Circuit by Using Fritzi	ng 26
3.3	Hardw	vare Development	27
	3.3.1	Relay	Error! Bookmark not defined.
	3.3.1.1	Relay Pinout	28
	3.3.2	Ds3231 (Real Time Clock)	28-29
	3.3.2.1	Clock and Calendar	29
	3.3.3	Arduino Uno	30
	3.3.4	Lead Acid Battery	31
	3.3.4.2	Product Specification	31
	3.3.5	Making The Casing Box for This System	32
	3.3.6	Assemble Hardware Process	32-34
3.4	Interfa	ace the Development of Software and Hardw	vare 35
3.5	Testin	g	36
	3.5.1	Testing Components	36
	3.5.2	Testing on Switching Sequences	36-39
	3.5.3	Testing Power Storage on DC Load	40
	3.5.4	Charging Power Storage	40-41

CHA	PTER 4	RESULTS AND DISCUSSION	42
4.0	Introduc	tion	42-43
4.1	Hardwa	re Testing	42
4.2	System	Overview	43
4.3	Testing	Results' and Discussion	43
	4.3.1	Festing Components	44-45
	4.3.2	Festing on Switching Sequences	45-52
	4.3.3	Festing Power Storage on DC Load	53-56
	4.3.3.1 0	Calculation	56
	4.3.4 (Charging Power Storage	57-60
	4.4 I	Discussion	60-61
CHA	PTER 5	CONCLUSION AND RECOMMENDATION	62
5.0	Introduc	tion	62
5.1	Summar	ry Research	62-63
5.2	Recomn	nendation	63-64
REFF	ERENCE	S	65-70
APPE	NDIX		71-75

xiii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.0:	Comparison of the approximate energy density	10
Table 3.0:	Battery specification	31
Table 3.1:	On-peak Relay Configure Normal Condition	37
Table 3.2:	On-peak Relay Configure in Low Power Storage	37
Table 3.3:	On-peak Relay Configure While Power Outage	38
Table 3.4:	Off-peak relay Configure Normal Condition	38
Table 3.5:	Off-peak relay Configure in Low Power Storage	38
Table 3.6:	Off-peak relay Configure While Power Outage	39
Table 3.7:	Checking Storage Capacity Status	39
Table 4.0:	On-peak Relay Configure Normal Condition	46
Table 41:	On-peak Relay Configure in Low Power Storage	47
Table 4.2:	On-peak Relay Configure While Power Outage	48
Table 4.3:	Off-peak relay Configure Normal Condition	49
Table 4.4:	Off-peak relay Configure in Low Power Storage	50
Table 4.5:	Off-peak relay Configure While Power Outage	51
Table 4.6:	Checking Storage Capacity Status	52
Table 4.7:	Testing Battery Capacity	55
Table 4.8:	Charging Power Storage Data Table	59

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.0:	ESS on Grid	6
Figure 2.1:	Powerwall	13
Figure 2.2:	Whole Home Backup	14
Figure 2.3:	Partial Home Backup	14
Figure 3.0:	Whole Project Flow Chart	17
Figure 3.1:	Methodology Flow Chart	18
Figure 3.2:	Flow Chart of Intelligent Power Storage in On-Peak Time	19
Figure 3.3:	Flow Chart of Intelligent Power Storage in Off-Peak Time	20
Figure 3.4:	Flow Chart of Power Storage Charging	21
Figure 3.5:	Arduino Uno	23
Figure 3.6:	SketchUp 2019 Software	24
Figure 3.7:	Front Side of Intelligent Power Storage Project Design	24
Figure 3.8:	Right Side of Intelligent Power Storage Project Design	24
Figure 3.9:	Software NI Multisim	25
Figure 3.10:	Voltage Divider Designed Circuit	25
Figure 3.11:	Fritzing Software	26
Figure 3.12:	Circuit Diagram for Hardware Part by Using Fritzing	26
Figure 3.13:	Relay Module for Arduino 15	27

Figure 3.14:	Relay Module Pinout	28
Figure 3.15:	DS3231 Schematic Diagram	29
Figure 3.16:	Arduino Uno	30
Figure 3.17:	Lead Acid Battery	31
Figure 3.18:	Process to Make Casing for This Sysytem	32
Figure 3.19:	Soldering Process at Needed Parts	32
Figure 3.20:	Process to Tidy-up the Wires into Trunking	33
Figure 3.21:	Fully Assemble All Parts	33
Figure 3.22	Fully Assemble All Parts at Right Side	34
Figure 3.23:	Fully Assemble All Parts at Front Side	34
Figure 3.24:	Fully Assemble All Parts at Top Side	34
Figure 3.25:	Interface before Soldering	35
Figure 3.26:	Fully Interface Between Hardware and Software	35
Figure 3.27:	Arduino Coding for Testing the Relay	36
Figure 3.28:	Testing Power Storage on DC Load	40
Figure 3.29:	Low Power Storage Need to be Charge	41
Figure 4.0:	Relay in NC Condition	44
Figure 4.1:	Relay in NO Condition	44
Figure 4.2:	Exhaust Fan Hardware Testing	45
Figure 4.3:	On-peak Relay Configure Normal Condition	46
Figure 4.4:	On-peak Relay Configure Low Power Condition 16	47

Figure 4.5:	On-peak Relay Configure While Power Outage	48
Figure 4.6:	Off-peak Relay Configure Normal Condition	49
Figure 4.7:	On-peak Relay Configure Low Power Condition	50
Figure 4.8:	Off-peak Relay Configure While Power Outage	51
Figure 4.9:	Checking Storage Capacity Status	52
Figure 4.10:	Testing Start	53
Figure 4.11:	After 1 Hour Running (12.03V)	54
Figure 4.12:	After 7 Hours Runnig	54
Figure 4.13:	Measured Voltage While Running Load Graph	56
Figure 4.14:	Power Storage at Low Capacity (Before Charge)	57
Figure 4.15:	Power Storage at Ideal Capacity (After Charge)	58
Figure 4.16:	Charging Power Storage Graph	60

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
	Appendix 1	OPTR News by TNB	71
	Appendix 2	Battery 12V 12AH Datasheet	72
	Appendix 3	Relay Module 5V 1Channel Datasheet	73
	Appendix 4	DS3231 Real Time Clock Datasheet	74
	Appendix 5	Aduino Uno Datasheet	75

LIST OF SYMBOLS

V	-	Voltage
Ι	-	Current
W	-	Watt
NC	-	Normally Close
NO	-	Normally Open
AH	-	Ampere Hour
Re	-	Reynold number
\mathbf{V}	-	Velocity
R	-	Relay
Α	-	Ampere
н	-	Hour

LIST OF ABBREVIATIONS

ESS	Energy Storage System		
TNB	Tenaga Nasional Berhad		
NC	Normally Close		
NO	Normally Open		
OPTR	Off Peak Tariff Rate		
AH	Ampere Hour		
ROI	Return Of Investment		
R&D	Research and Development		
R	Relay		
RTC	Real Time Clock		

20

CHAPTER 1

INTRODUCTION

1.0 Background

Energy Storage System (ESS) is a technology for capturing energy produced that to be use when needed. Accumulator and battery is element known as storage device to store electrical energy. ESS can makes electrical energy more convenient or economically storable forms in a system. Mostly, nowadays technology provide longperiod of storage. However, have some of provider make just short-period of storage system. Rechargeable batteries which is the common of energy storage system, which is generally known converting chemical energy to electrical energy. That usually being use for gadget and transportation. Photovoltaics is common of the renewable energy to generate energy at home and it growing fast due to needs of consumer. Exceed 40% self-sufficiency in a household equipped with photovoltaics. Multiple manufacturers produce rechargeable energy storage battery systems that generally hold excess energy from the generation of domestic solar / wind. Today, because of their similar costs but much better performance, Li-ion battery is preferable to use for home energy storage. Home-generated electricity can be sold to the grid for purely financial purposes in areas where net metering is available through a grid-tie inverter without the use of batteries for storage.

1.1 Problem Statement

The problem statement for this project are when the domestic electrical tariff being charge in off-peak and on peak time (OPTR) type. So that, when in the on-peak time the tariff will higher rather than the off-peak time. It will burden consumer that use high power consumption on peak time. Next, when a power outage situation happens it will interrupt the user in online load situation. Lack of ESS system for domestic user which is automatically control charging and automatically flow of the power supply between power storage and power provider.

1.2 Objective

The objective for this research project are:

- To control the switching condition from TNB power supply to the Intelligent Switching Power Storage Supply when on-peak and off-peak time by use real time programming system.
- ii. To develop an uninterrupted power supply for domestic user. So that, if load being used it should be switch and give the online load with backup power supply.
- iii. To analyse the ability of the ESS in terms of store power, manage, and reuse for low power consumption load in domestic usage by control the charging process and flow of the electrical energy stored automatically.

2

1.3 Scope of work

The scope for this project:

- i. This project will focusing on ESS for the residential domestic user which is consists of intelligent switching and power storage that will be represent in hardware application.
- ii. The system will include few types of electronics circuit which is rectifier, voltage divider, buck-boost converter, and electrical meter as gauge in this system.
- iii. Automatically switching process between TNB power supply and power storage.
- iv. Cover up the power interrupted situation when happen while using some targeted load.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

The literature review outline in the starting of a research project which is to review the acute point of this project. This literature review being organize to gain information from other researchers which is have some same point of view in term of ESS. This chapter will elaborate more in term of energy storage, switching system, grid system, and advantage of this kind of system. It consist of two part which is background study and related previous project.

2.1 Background Study

Background study is a compilation of information from journal, thesis, and internet that related to this system. So that can have sufficient information based on the analysis purpose arguments or problem to fine solution.

2.1.1 Electrical Energy

According to (Jucker, Leupp and Sjökvist, 2008) electrical energy is an unable to see without suitable mechanism. It can considered as identical consumer benefit for a long time. Today, it accounts for 12 percent of humanity's total power energy