

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF GARBAGE MONITORING SYSTEMS BY USING ULTRASONIC SENSOR TO HELP THE SANITARY AGENCY MONITOR THE GARBAGE IN AREA

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of of Electronics Engineering Technology (Telecommunication) with Honours.

by

MUHAMMAD JAMAL HAFIZ BIN CHE JAPAR B071610326 941012015029

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF GARBAGE MONITORING SYSTEMS BY USING ULTRASONIC SENSOR TO HELP THE SANITARY AGENCY MONITOR THE GARBAGE IN AREA

Sesi Pengajian: 2019

Saya **Muhammad Jamal Hafiz Bin Che Japar** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK TERHAD

Yang benar,

Disahkan oleh penyelia:

.....

TS. MOHD ANUAR BIN ADIP

MUHAMMAD JAMAL HAFIZ BIN CHE JAPAR Alamat Tetap: No. 32, Lorong Mewah 19, Taman Mewah, 34600 Kamunting, Perak

Cop Rasmi Penyelia

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF GARBAGE MONITORING SYSTEMS BY USING ULTRASONIC SENSOR TO HELP THE SANITARY AGENCY MONITOR THE GARBAGE IN AREA is the results of my own research except as cited in references.

> Signature: Author : MUHAMMAD JAMAL HAFIZ BIN CHE JAPAR Date: 12 December 2019

APPROVAL

This report is submitted to the Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

ABSTRACT

Development of garbage monitoring system by using ultrasonic sensor to help the sanitary agency monitor the garbage in area. The project aims to develop one of the monitoring systems that for the use of municipal corporation and sanitary agency. It also can facilitate them and improve the managing and monitoring system of the dustbin. Municipal corporation are facing difficulty in monitoring dustbin because there is no device that can be used to regularly observe the garbage. They are forced to rely on their workers as they will give report after their duty. Besides that, municipal corporation keep getting a complain without any way to verify the complains. This project is based on Arduino system as a microcontroller with using Mit app inventor application to monitor the level of garbage by detecting weight of waste and level of waste. It will be connected to Wi-Fi module so that data can be transfer wirelessly. It will help municipal corporation in carrying out their work without any deception from their workers. The populated areas are also in clean condition with waste collection following schedule. The proposed of this project to help municipal corporation as well public in keeping the area clean with using system that are more systematically

ABSTRAK

Pembangunan sistem pemantauan sampah dengan menggunakan sensor ultrasonik untuk membantu agensi kebersihan memantau sampah di kawasan terlibat. Projek ini bertujuan untuk membangunkan salah satu sistem pemantauan yang digunakan untuk perbadanan perbandaran dan agensi kebersihan. Ia juga dapat memudahkan mereka dan meningkatkan sistem pengurusan dan pemantauan tong sampah. Perbadanan perbandaran menghadapi kesukaran memantau habuk kerana tiada alat yang boleh digunakan untuk memantau keadaan tong sampah. Mereka terpaksa bergantung kepada pekerja mereka dengan pekerja mereka akan melaporkan selepas tugas mereka selesai. Selain itu, perbadanan perbandaran terus menerus mendapat aduan tanpa sebarang cara untuk mengesahkan aduan tersebut. Projek ini berdasarkan sistem Arduino sebagai mikrokontroler dengan menggunakan aplikasi Mit app inventor untuk memantau tahap sampah dengan mengesan berat sampah dan tahap sampah. Ia akan disambungkan ke modul Wi-Fi supaya data boleh ditransfer secara tanpa wayar. Ia akan membantu perbandaran tempatan dalam menjalankan kerja mereka tanpa sebarang penipuan daripada pekerja mereka. Kawasan penduduk juga berada dalam keadaan bersih dengan pengumpulan sampah mengikut jadual. Cadangan projek ini untuk membantu pihak pembandaran tempatan serta orang awam dalam menjaga kawasan supaya lebih bersih dengan menggunakan sistem yang lebih sistematik

DEDICATION

Special dedication to my beloved parents,

En. Che Japar & Pn. Hasnah

My family,

Most honourable man, my supervisor,

En Mohd Anuar Bin Adip

My beloved friends,

Nabil, Imran, Zulfan, Amin, Din, Muaz

ACKNOWLEDGEMENTS

First and foremost, all praise and gratitude to Allah SWT for giving me strength to went through all difficulties and hardship to successfully finishing up my thesis. I wish to express my sincere appreciation to my supervisor, En Mohd Anuar Bin Adip for valuable experience, encouragement, guidance, critics and friendship. Not forgotten to all the lecturers that had been taught me over these four years.

Next, I would like to express my appreciation to my beloved parents, En Japar and Pn Hasnah and also to all my family and friends for all their supports, motivation and pray from the initial of the project until the end of it. Last but not least, special thanks to my friends, my classmate and others that non-stop helping me and support me to complete this project.

TABLE OF CONTENTS

		PA	GE
TABL	E OF (CONTENTS	X
LIST	OF TA	BLES	xiv
LIST	OF FIG	GURES	XV
LIST	OF SY	MBOLS x	viii
LIST	OF AB	BREVIATIONS	xix
CHAF	PTER 1	INTRODUCTION	1
1.0	Introdu	uction	1
1.1	Backg	round of Project	1
1.2	Proble	m Statement	2
1.3	Object	ive	6
1.4	Scope	of Project	6
1.5	Expect	ted Outcome of Project	6
CHAF	PTER 2	LITERATURE REVIEW	8
2.0	Introdu	uction	8
2.1	Resear	rch on Previous Project	8
	2.1.1	Smart Dual Dustbin Model for Waste Management in Smart Cities	9
	2.1.2	Smart E-dustbin	10
	2.1.3	Efficient IOT Based Smart Bin for Clean Environment	11
	2.1.4	IOT Based Solid Waste Management System for Smartcity	14
	2.1.5	Efficient Waste Collection System	13

	2.1.6	Automated Indoor Waste Management System Employing	17
		Wavefront Algorithm and Received Signal Strength Indicator	
		Values-based Mobile Robot	
	2.1.7	Dissipation of Waste using Dynamic Perception and Alarming	20
		System: A Smart City Application	
	2.1.8	A Real-time Smart Dumpsters Monitoring and Garbage	21
		Collection System	
	2.1.9	Smart Bin (Waste Segregation and Optimisation)	23
	2.1.10	Smart Garbage Monitoring System Using AVR Microcontroller	25
2.2	Sumn	nary	27
CILA			•
СНА	PTER 3		28
3.0	Introd	luction	28
3.1	Overv	view of the System	29
	3.1.1	Flow Chart	29
	3.1.2	Explanation of Flow Chart	30
	3.1.3	Process Flow for Connection	30
3.2	Produ	uct Development	31
	3.2.1F	Hardware	31
		3.2.1.1 Arduino ATmega328P	31
		3.2.1.2 Ultrasonic Sensor (HC-SR04)	34
		3.2.1.3 Load Cell	36
		3.2.1.4 Load Cell Amplifier Shield	39
		3.2.1.5 Wi-fi module ESP8266	42

3.2.2Software development	
3.2.2.1 Arduino IDE	45
3.2.2.2 Proteus	46
3.2.2.3 ThingSpeak	47
3.2.2.4 Mit App Inventor	48

CHA	PTER 4 RESULT AND DISCUSSION	49
4.0	Introduction	49
4.1	Hardware Configuration	49
4.2	Schematic Design	52
4.3	Software Implementation	55
4.4	Analysis	64
	4.4.1 Analysis with using Serial Monitor	65
	4.4.2 Analysis with using ThingSpeak	66
4.5	Result	68

4.6	Discussion		73

CHAF	TER 5	CONCLUSION	74	ŀ
5.0	Introduction		74	ł
5.1	Conclusion		74	ł
5.2	Recommendat	ion	75	5
REFE	RENCES		70	5
APPE	NDIX		78	3

LIST OF TABLES

TABLE TITLE

PAGE

Table 1.0:	List of waste and their percentage	2
Table 1.2:	Growth rate population in Malaysia	3
Table 1.3	Example of waste collection scheduled	5
Table 1.4	Expected outcome accordance to condition	7
Table 2.0	Table of status garbage bins according to the level detecting	14
	by the Sensor	
Table 2.1	Required technical specification	22
Table 2.2	Specific working parameter	22
Table 3.0	Pin and detail for every pin from Arduino Uno ATmega328P	32
Table 3.1	Specification of Arduino ATmega328P	33
Table 3.2	Specification of HC-SR04	35
Table 3.3	Pin and description of HC-SR04	35
Table 3.4	Specification of strain gauge load cell	38
Table 3.5	Pin description of Load Cell Amplifier Shield	40
Table 3.6	Pin description for Wi-Fi module ESP8266	43
Table 3.7	Features in Wi-Fi module ESP8266	44
Table 3.8	Electrical characteristic of Wi-Fi module ESP8266	44
Table 4.1	Analysis on load cell sensor with ThingSpeak	66
Table 4.2	Analysis on ultrasonic sensor with ThingSpeak	67

LIST OF FIGURES

FIGURE TITLE

PAGE

Figure 1.0:	Article about scheduled of waste collection changing	4
Figure 2.0:	Block diagram connection of Smart Dual Dustbin Model	10
Figure 2.1:	Block diagram of Smart dual Dustbin	11
Figure 2.2:	Flow chart of Efficient IOT Based Smart Bin for Clean	13
	Environment	
Figure 2.3:	Flow chart of system IOT Based Solid Waste Management	15
	System for Smartcity	
Figure 2.4	Block diagram of system Efficient Waste Collection	16
Figure 2.5	Illustration of the automated robot	17
Figure 2.6	Flow chart of the system for Robot	18
Figure 2.7	Flow chart of the algorithm for tracking and navigation	19
Figure 2.8	Interface of the application	20
Figure 2.9	System architecture of Dissipation of Waste using Dynamic	21
	Perception and Alarming System: A Smart City Application	
Figure 2.10	Flow chart of the system	24
Figure 2.11	Block diagram of Smart Garbage Management System	25
Figure 2.12	Flow chart of the system	26
Figure 3.0	Flow chart of the system	29
Figure 3.1	Pin for Arduino Uno ATmega328P31	
Figure 3.2	Hardware design and pin of Ultrasonic Sensor (HC-SR04)	34
Figure 3.3	Model of strain gauge load cell	36

Figure 3.5	Model of Load Cell Amplifier Shield	39
Figure 3.6	Wheatstone Bridge configuration for load cell to Load Cell	41
	Amplifier Shield	
Figure 3.7	Model of Wi-fi module ESP8266	42
Figure 3.8	Logo of Arduino IDE	45
Figure 3.9	Logo of Proteus 8	46
Figure 3.10	Logo of ThingSpeak	47
Figure 3.11	Logo of Mit App inventor	48
Figure 4.1	The stages of hardware flow	50
Figure 4.2	Schematic design of the project	53
Figure 4.3	Coding of pin that had been declared	55
Figure 4.4	Coding for load sensor and ultrasonic sensor	56
Figure 4.5	Code for void loop	57
Figure 4.6	Code for void ESPcheck	57
Figure 4.7	Code for void write ThingSpeak	58
Figure 4.8	Interface of webpage in the ThingSpeak	59
Figure 4.9	Web interface of Mit app Inventor for designing the app	60
Figure 4.10	Block that provided by Mit App Inventor	61
Figure 4.11	Block of 'CheckSensor'	61
Figure 4.12	Block of 'initialize' of dustbin condition	62
Figure 4.13	Block of integration Mit App Inventor and ThingSpeak	62
Figure 4.14	Block of condition when system will notify and warning	63
Figure 4.15	Serial monitor with no waste	64
Figure 4.16	Serial monitor with 5kg load and 5cm height of waste	64

Figure 4.17	Serial monitor with 0.8kg load and 19cm height of waste	65
Figure 4.18	Serial monitor with 7kg load and 25cm height of waste	65
Figure 4.19	Interface of the application	69
Figure 4.20	Login page for guest	69
Figure 4.21	Guest pages	70
Figure 4.22	Login page for workers	70
Figure 4.23	Condition of dustbin when the waste not reaching limit in term	71
	of height and weight	
Figure 4.24	Condition of dustbin when the waste reach limit height,	71
	weight or both	
Figure 4.25	Login page for supervisor	72
Figure 4.26	Supervisor Pages	72

LIST OF APPENDICES

APPENDIX	TITLE	PAGES
Appendix 1	Gantt Chart Planning for "Projek Sarjana Muda 1	78
Appendix 2	Gantt Chart Planning for "Projek Sarjana Muda 2	79
Appendix 3	Block Mit App Inventor	80
Appendix 4	Code System	85
Appendix 5	Model	91

LIST OF SYMBOLS

- kg kilogram
- m meter
- cm centimetre
- **mm** millimetre
- V Voltage
- A Ampere
- M Mega
- Hz Hertz
- m milli
- **kB** kilobytes
- **Ω** Ohms

LIST OF ABBREVIATIONS

ΙΟΤ	Internet of Things
GSM	Global System for Mobile Communications
LCD	liquid-crystal display
ID	Identification
GPS	Global Positioning System
арр	Application
AVR	Alf and Vegard's RISC processor
IR	Infrared
VCC	Voltage Common Collector
VDD	Voltage Drain
RX	Receiver
ТХ	transmitter
PWM	Pulse Width Modulation
ICSP	In Circuit Serial Programming
Vin	Voltage Input
GND	Ground
USB	Universal Serial Bus
I/O	Input and Output
SOC	Wireless system-on-chip
TCP/IP	Transmission Control Protocol/Internet Protocol

IDE	Integrated Development Environment				
РСВ	Printed Circuit Board				
API	Application Program Interface				
IDE	Integrated Development Environment				
Wi-Fi	Wireless Fidelity				

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter is focussing to briefly describe of project that want to be run. It gives some explanation background of this project, how the idea gets inspired, problem statement that lead to the idea of the project and objective that need to archive from this project. It also will come out with expected output from expected input and impact of this project to the citizen.

1.1 Background of Project

Malaysian Government has a vision of making the country with technologically advanced country besides not forgetting its impact on the environment. In archiving these efforts, there are various efforts in terms of changes education pattern, evolution of urban area, as well as technology development. Beside of growth urban area, the problem of garbage is often a complaint among the people of Malaysian itself at the point when there are lodging regions in certain urban communities inside Malaysia that are not very well managed. Effect from this problem can cause unhealthy environment to among population while it also makes the area become tidy. There are various causes that cause junk waste not managed properly such as the garbage bins along did not integrate with the current technological advances. Because in Malaysia, garbage management is mostly managed by concessionaires who have been hired by municipalities so they must have their own initiative in making garbage management systems more efficient.

Because of these issues, there are inspired to produce with ideas that make waste management to be more effective. With that, they have improved the collection system of garbage collection, providing special waste bins to be managed outdoors and to hear and act immediately when there is a complaint from the surrounding residents or customers. Unfortunately, these efforts have not been sufficient to overcome waste management problems as most of these efforts are using more traditional methods of reliance on manpower which are not competent as using technology. This makes them neglect to effectively manage waste. With the rapid development of technology, they have to implement the technology of garbage management system to make housing area clean and safe.

1.2 Problem Statement

Garbage can be categorized into several types, including household waste, import waste, commercial waste, institutional waste, construction waste, industrial waste, public waste and any waste from time to time (official web page JPSPN, 2017). It's also can be categorized with composition of paper, plastic, glass and other. The resulting waste in the home is more difficult to manage than other wastes because the waste is not in use or isolated. This causes the municipalities to experience difficulties when picking the waste.

Component	Percent %			
leftover	45			
plastic	24			
paper	7			
metal	6			
glass	3			
other	15			
total	100			

Table 1.0 list of waste and their percentage

(Source: JPSPN, 2013)

Table above show the percentage of categorized waste that are been thrown by Malaysian citizen. Residual composition is influenced by many factors, such as economy, culture, geography, energy sources and climate.

Negeri	1996	1997	1998	1999	2000	2010 ¹	Kadar Pertumbuhan Purata (1998-2000, dalam %)
Kuala Lumpur	n.a.	n.a.	1,058	1,070	1,082	1,205	1.14
Selangor	n.a.	n.a.	1,169	1,204	1,240	1,617	3.04
Pahang	n.a.	n.a.	202	206	210	252	1.98
Kelantan	n.a.	n.a.	123	126	120	120	-1.22
Terengganu	n.a.	n.a.	119	122	125	157	2.52
N. Sembilan	245	250	267	278	291	427	4.69
Melaka	192	200	208	216	225	322	4.30
Johor	854	890	927	956	1,005	1,456	4.49
Perlis	26	27	28	28	29	34	1.79
Kedah	507	538	569	569	631	977	5.49
Pulau Pinang	570	591	611	611	648	844	3.03
Perak	672	696	719	719	763	996	3.06
Jumlah	3,066	3,192	6,000	6,137	6,378	8,407	2.86

Table 1.2 growth rate population in Malaysia

(Source: Tarmudi, 2012)

As the increase population in Malaysia, the amount of waste that are produced by public will also increase. Waste management in Malaysia that is seen to be increasingly critical is due to the ongoing waste generation. The latest data was recorded by the Solid Waste Management and Public Cleansing Corporation (SWCorp) for seven states under its supervision as of June last year (Nur Lela Zulkipli and Garret Dawum, 2016). Generate of domestic waste is more alarming with there are some housing areas that do not have a good waste management system. The result is the trash left outside the trash can and will be cluttered by the roadside. This situation will bring pollution to the environment. Irregular collection schedule contractor appointed by the local municipalities caused many areas that are crowded with residents especially the neighbourhood around the apartment faced garbage dumps which not only cause the smell but also exacerbate the landscape of the surrounding area.

This waste management issue is also affected by the incompetence of concessionaires in handling waste management as prescribed. This incompetence can be

seen in terms of collections where the designated collection period does not comply with the schedule set. This will cause the litter that has been accumulated over a long period of time to become smelly and attract the attention of pests that can cause disease. In addition, leachate dissolves along the road during transport or on the vehicle also becomes one of the effects of the trash when the waste is not being managed on time as long-lost garbage is likely to leak and cause the wastewater out.

Jadual kutipan sampah diubah PORT DICKSON an," katanya. Jadual kutipan Masalah lambakan sampah selesa Zainal Fitri bersampah di kawasan kata, kerjasama da-Kampung India dan ripada penduduk Kampung Cina di setiap lorong amat-Bukit Pelandok akan lah diperlukan bagi diubah sejajar dengan memastikan tong penambahbaikan peryang dibekalkan dikhidmatan penyediajaga dengan baik. an tong sampah di "Tong sampah Laporan Sinar Harian 24 Januari lalu kampung berkenaan. berpusat ditukar Pengarah Perbadanan Pengurusan kepada tong sampah individu berikutan Sisa Pepejal Dan Pembersihan Awam lambakan sampah, yang disebabkan ter-(SWCorp), Zainal Fitri Ahmad berkata, dapat individu tidak bertanggungjawab sebelum ini, kawasan itu dibekalkan demengambil kesempatan dengan turut ngan dua tong sampah berpusat dengan buang sampah di kawasan pusat tong kapasiti 1,100 liter, namun ditarik balik dan tersebut menggunakan lori, yang mana diganti dengan tong sampah individu. sepatutnya dibuang terus ke tapak pe-Menurutnya, semasa penggunaan lupusan. tong sampah berpusat, SWME mengada-'Pelbagai jenis sisa yang dibuang di kan kutipan sampah sebanyak enam kali kawasan pusat tong tersebut, termasuklah seminggu. sisa pukal dan sisa pembinaan," katanya. "Selepas khidmat tong sampah pusat Ujarnya, oleh yang demikian, hasil perdiganti dengan tong sampah individu, jabincangan bersama Majlis Perbandaran dual kutipan sampah ditukarkan kepada Port Dickson, SWCorp, SWME dan jawadua kali seminggu. tankuasa penduduk sebulat suara me-"Jadual ini akan mula berkuat kuasa mutuskan supaya tong berpusat ditarik sesetelah tong sampah individu dibekalkanmula dan digantikan dengan tong individu kepada setiap lorong di kampung berkenaberkapasiti 240 liter ataupun 120 liter.

Figure 1.0 article about scheduled of waste collection changing

Besides that, unregulated waste management not only creates uncomfortable but also poses a risk to the surrounding population against illness due to this problem. "Selangor State the most unmanaged garbage and not collected, thus recording the highest dengue cases in Malaysia", Tan Sri Noh Omar, The Ministry of Housing and Local Government. The problem of insect / animal borne diseases also involves mice, flies and cockroaches. Breeding of these insects / animals occurs near garbage dumps due to poorly managed food waste mixed with other waste, causing the food waste to be a source of food for these insects / animals. As example, when the waste not collected on that day, and are left outside garbage bin, it will attract stray dog to find food causes litter scattered,