

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF RIVER TRASH COLLECTOR

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours.

by

MUHAMAD ARIB BIN SATRO B071610231 940615106013

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of River Trash Collector

Sesi Pengajian: 2019

Saya **MUHAMAD ARIB BIN SATRO** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT*Mengandungi maklumat yang berdarjah keselamatan atau
kepentingan Malaysia sebagaimana yang termaktub dalam
AKTA RAHSIA RASMI 1972.TERHAD*Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan.

TIDA	AK TERHAD
------	-----------

Yang benar,

Tarikh:

Disahkan oleh penyelia:

En. Wan Norhisyam bin Abd Rashid Cop Rasmi Penyelia

Alamat Tetap: Jalan Besar, Kg. Ulu Chuchoh 43950, Sungai Pelek Sepang, Selangor

..... MUHAMAD ARIB BIN SATRO

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

ii

DECLARATION

I hereby, declared this report entitled Development of River Trash Collector is the results of my own research except as cited in references.

Signature:	
Author:	MUHAMAD ARIB BIN SATRO
Date:	

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	En. Wan Norhisyam bin Abd Rashid

ABSTRAK

Sungai adalah antara sumber air tawar paling penting di bumi kita dan ini adalah salah satu sebab penting mengapa kita perlu menangani isu pencemaran sungai yang sangat berleluasa. Sungai tercemar mempunyai kesan yang sangat berbahaya kepada ekosistem sungai dan mungkin menurunkan paras oksigen. Kos yang lebih tinggi dan lebih banyak tenaga manusia untuk membersihkan sungai adalah masalah utama. Pemungut Sampah Sungai dibangunkan untuk mengutip semua sampah di sungai dan menganalisis kadar aliran, jumlah air dan kekerapan. Meter aliran digunakan untuk mengukur kadar aliran dan isipadu manakala pam air digunakan untuk menghisap semua serpihan. Pemilihan kabel, penyambung, saiz paip yang betul adalah penting untuk projek ini. IDE Arduino digunakan untuk membuat system pengekodan dan kemudian memantau pengukuran kadar aliran, kelantangan dan kekerapan. Secara keseluruhannya, saiz paip dan sampah mempengaruhi kadar aliran dan isipadu bagi menyedut sampah.

ABSTRACT

Rivers are among the most crucial sources of freshwater on our earth and this is one of the important reasons why we have to address river pollution issue very important. Polluted rivers have the really dangerous impact on river ecosystems and may drop the oxygen level. The higher cost and more manpower to clean the river is the main problem. River Trash Collector is developed in order to collect all debris on river and analyses the flow rate, volume of water and frequency. Flow meter is used to measure the flow rate and volume while water pump is used to suck all debris. Choosing the correct cable, connector, size of pipe is important for this project. Arduino IDE is used to make the coding system and then monitor the measurement of flow rate, volume and frequency. Overall, the size of pipe and bin influenced the flow rate and volume in order to suck the trash.

DEDICATION

I dedicate this thesis to my beloved parents, supervisor, and my fellow friends. May Allah bless them.

ACKNOWLEDGEMENTS

First and foremost, all praise to Allah for His mercy that this thesis can be completed on time. I am thankful to my supervisor, Mr. Wan Norhisyam b. Abd Rashid for his advice and guidance from beginning until I can complete my project. To my beloved parents, I offer them my deepest gratitude for all their prayers and support. Lastly, I offer my regards and blessings to my housemate and classmate who always supported me in any aspects during the completion of this project.

Thank You

viii

TABLE OF CONTENTS

			PAGE
	TABLE O	F CONTENTS	ix
	LIST OF	TABLES	xii
	LIST OF	FIGURES	xiii
	LIST OF	APPENDICES	XV
	LIST OF	SYMBOLS	xvi
	LIST OF	ABBREVIATIONS	xvii
СНА	PTER 1	INTRODUCTION	1
1.1	Backgroun	d	1
1.2	Problem S	tatement	2
1.3	Objective		2
1.4	Scope		2
СНА	PTER 2	LITERATURE REVIEW	3
2.1	Introductio	on	3
2.2	Structural	Pattern of Water Pollution and it Sources in Malaysia	3
2.3	The Clean	Oceans Device	6
	2.3.1	Prototype I	7
	2.3.2	Prototype II ix	8

	2.3.3	Hardware Design	11	
2.4	Effect of W	ater Pollution		16
2.5	Seabin			18
	2.5.1	Overview		18
	2.5.2	The Seabin Product Revealed		19
	2.5.3	Specifications		20
	2.5.4	Components of Seabin		21
2.6	Efficient W	aterwheel Garbage Collector		22
2.7	Melaka Riv	er		24
	2.7.1	Water Pollution in Melaka River		25
	2.7.2	Cleaning System in Melaka River		25
CHA	PTER 3	METHODOLOGY		28
3.1	Introduction	1		28
3.2	Hardware S	election		29
	3.2.1	Arduino UNO		29
	3.2.2	Catch Bag		30
	3.2.3	Liquid Crystal Display (LCD)		30
	3.2.4	Water Flow Sensor		32
	3.2.5	Water Pump		33
3.3	Software Se	election		34

Х

	3.3.1	Arduino IDE	34
3.4	Capacity of I	Pump	35
	3.4.1 Berno	oulli Equation	35
СНАР	PTER 4	RESULT AND DISCUSSION	36
4.1	Introduction		36
4.2	Overall Proje	ect and Operation	36
4.3	Software Tes	sting	37
4.4	Hardware Te	esting	38
4.5	Result and D	Data	41
4.6	Discussion		46
CHAP	PTER 5	CONCLUSION	47
5.1	Introduction		47
5.2	Summary of	Project	47
5.3	Recommend	ation	48
REFE	RENCES		49
APPE	NDIX		51

xi

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Distribution of major point sources of water pollution, Malaysia, 1991	4
Table 2.2:	Natural water pollution by sectors 1986–1988	5
Table 2.3:	Natural pollution load discharged according to sector 1990–1993	6
Table 4.1:	Value of min, max, average and standard deviation	41
Table 4.2 :	The data for flow rate and 20 litres volume.	42
Table 4.3:	Value of min, max, average and standard deviation	43
Table 4.4:	Flow rate and frequency	44

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	Block diagram for proposed project	7
Figure 2.2:	Prototype I design	8
Figure 2.3:	The prototype conveyor belt construction	9
Figure 2.4:	The design of prototype II.	9
Figure 2.5:	The design of conveyor belt system with thread rods, acrylic cu and washers integrated and bolt	ut-outs, 10
Figure 2.6:	Conveyor belt collection system draw diagram, which includes motors, time equipment, and timing belt.	11
Figure 2.7:	Schematic of Hardware Components	12
Figure 2.8:	DC Motor Controller	13
Figure 2.9:	Schematic of PCB Board	14
Figure 2.10:	PCB Board Layout	15
Figure 2.11:	Water pollution at streams	16
Figure 2.12:	The location to place The Seabin	20
Figure 2.13:	The specification of The Seabin	20
Figure 2.14:	The catch bag assembly	21
Figure 2.15:	The Seabin's component	21
Figure 2.16:	The operation of Seabin	22

Figure 2.17:	Isometric View of Waterwheel Garbage Collector	23
Figure 2.18:	The Data of Different spend and rpm during test session.	24
Figure 3.1:	Flow chart for PSM progress	28
Figure 3.2:	Arduino Uno	29
Figure 3.3:	The catch bag	30
Figure 3.4:	Liquid Crystal Display	31
Figure 3.5:	Pin Description of LCD	31
Figure 3.6:	Water Flow Sensor	32
Figure 3.7:	Water Pump	33
Figure 3.8:	Arduino IDE	34
Figure 3.9:	Bernoulli Equation	35
Figure 4. 1:	Arduino IDE	37
Figure 4.2:	Hardware testing	38
Figure 4.3:	Hardware of River Trash Collector	39
Figure 4.4:	Flow rate for 10 litres	41
Figure 4.5:	Flow rate for 20 litres	43
Figure 4.6:	Relationship between flow rate and frequency	44
Figure 4 7:	Relationship between flow rate and frequency	45

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1:	Flow Sensor Specification	51

LIST OF SYMBOLS

D, d	-	Diameter
F	-	Force
g	-	Gravity = 9.81 m/s
Ι	-	Moment of inertia
1	-	Length
m	-	Mass
Ν	-	Rotational velocity
Р	-	Pressure
Q	-	Volumetric flow-rate
r	-	Radius
Т	-	Torque
Re	-	Reynold number
V	-	Velocity
w	-	Angular velocity
х	-	Displacement
Z	-	Height
q	-	Angle

xvi

LIST OF ABBREVIATIONS

- PCA Principal Component Analysis
- GPS Global Positioning System

xvii

CHAPTER 1

INTRODUCTION

1.1 Background

River pollution is a water pollution which means the introduction into rivers of various chemicals and other pollutants, such as sewage, food waste and agricultural effluent. Rivers are among the most crucial sources of freshwater on our earth and this is one of the important reasons why we have to address river pollution issue very important. Polluted rivers have the really dangerous impact on river ecosystems mostly because water pollution causes the important drop in oxygen levels, and many animals are not able to tolerate low levels of oxygen in rivers. Malaysia is one of the countries in the world have an attractive river. At this point, some people like to throw the waste into the river and the condition of the river is contaminated by the behavior of some people, but at that point the condition is polluted by people like to cast the waste into the river. This action will create it flood occurred and suffer many people nearest of river. Besides that, the water pollution will happen. Ministry of Agriculture was launched many programs to give exposure to people about the collapse of habit like to throw the waste into the river. Besides that, the government also spent budget in building the trash trap but this solution does not give the big impact to ensure the river clean from the waste. Another program from the government is to ensure the river environment clean from the waste is hired the contractor to collect the waste. One of the solutions is invented the waste trap to collect the trash to follow the plan or time set. From this issue, River Trash Collector with Pump

will be designed. Besides that, the cost is reduced to design it. Where used the water pump as the crucial element to suck the waste and trap into container tank.

1.2 Problem Statement

The waste domestic which is consists of garbage and sewage dumped randomly into the river is the main reason of water pollution. Insufficient oxygen and low quality of the water can be a threatened marine life. It became a source of disease and animals that drink this water can event pass this disease to people after they eat an infected animal (Nasir, 2016). Other that, high cost to clean the river is another problem. The government provide more budget in build trash trap. Hence, it required more manpower to collect the waste. The suitable trash collector is required in order to overcome this issue.

1.3 Objective

The objectives of this project are:

- 1. To develop the river trash collector.
- 2. To collect the debris in pond.
- 3. To analyse the flow rate, volume of water and frequency

1.4 Scope

The scope of this project is:

- 1. The system of trash collector is monitoring by using Arduino.
- 2. Propose the best design and improvement be made for river trash collector.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter describe the information about water pollution in Malaysia and also Melaka River. Other that, this chapter is discussing about information the previous project is discuss which is Seabin and Waterwheel Garbage Collector with the operation.

2.2 Structural Pattern of Water Pollution and it Sources in Malaysia

In Peninsular Malaysia, development of industry has done successfully contributions to the development of economy. The employment is improved and then socio-economic and infrastructure development is promoted. However, it has serious environmental consequences because all companies need to use renewable and nonrenewable resources. The conversion of these materials into finished or semi-finished industrial products undoubtedly leads to contaminants frequently discharged into water as waste. These wastes are in solid, liquid or gaseous forms and when discharged indiscriminately could adversely affect the quality of the water (Muyibi, Ambali, & Eissa, 2008).

The Department of Environment (DOE) has listed 2.292 industries as important sources of water pollution in Peninsular Malaysia. 928 (40%) food and beverage (F&B) plants, 324 (14,1%) rubber processing and 270 (11,4%) critical chemical products were the main pollutants industries. Based on the water pollution sources by state in Peninsular

Malaysia, mostly was found in Selangor (414), Johor (384), Penang (328) and Perak (253).

Besides natural water pollution, the major contributors to water pollution are animal waste and wastewater accompanied by agricultural and manufacturing industries in the country. In terms of the burden of pollution, both the manufactures and farming (palm-oil and rubber) industries contributed 8 percent (37 t / day) in 1988 to the demand for Biochemical Oxygen, different from 13% (65 t / day) and 79% (385 t / day).

State	Palm oil	Raw rubber	Rubber product	Food bevera	Textile/leather	Paper	Chem.	Total
Selangor	29	13	132	94	22	15	109	414
Johor	67	41	36	136	59	11	34	384
Pulau	5	9	35	164	58	14	43	328
Penang.								
Perak	36	26	28	133	13	5	12	253
Kedah	3	29	22	98	9	2	8	171
Terenganu	11	3	6	84	16	_	_	120
Pahang	58	20	3	33	_	1	1	112
Wilaya/P	_	4	26	21	10	13	31	105
Sabah	27	4	3	49	5	11	5	104
Negeri/S	12	22	13	15	2	22	9	95
Melaka	3	12	17	21	7	3	11	74
Kelantan	8	11	1	28	4	1	3	56
Sarawak	6	4	1	38	_	3	4	56
Perlis	_	_	1	14	1	_	_	16
Total	255	198	324	928	206	101	270	2,292
Percent.	11.6	8.6	14.1	40.5	9.0	4.4	11.8	_

Table 2.1: Distribution of major point sources of water pollution, Malaysia, 1991

Organic emission has risen from 485 to 1,033 loads as proof of BOD published in line with the sector between 1990 and 1993. The table shows that animal waste is a country problem Also unnatural in terms of land ownership concerns and of the low regard of society as a backyard instead of a modern industry of animal husbandry.

Sector	1986			1987			1988		
	BOD (1) load	Percent (%)	Popu. (2) equi.	BOD (1) load	Percent (%)	Popu. (2) equi.	BOD (1) load	Percent (%)	Popu. (2) equi
Agro-based industries	11	2.4	0.22	15	3.0	0.3	12	2.0	0.24
Manufacturing industries	21	4.6	0.42	25	5.2	0.5	25	6.0	0.5
Animal husbandries	60	13.1	1.20	65	12.4	1.3	65	13.0	1.3
Population (sewage equi)	366	79.9	7.32	380	78.4	7.6	385	79.0	7.7
Total	458	100	9.16	485	100	9.7	487	100	9.74

 Table 2.2: Natural water pollution by sectors 1986–1988

(1) means in tonne/day and (2) means in million, using a BOD load of 0.05 g/capacity/day

The elimination of waste material from city areas proceeds in terms of effective management and recycling of water resources. The amount of waste is nitrate and phosphate-based water. Biologically speaking, this is often a major cause of downstream eutrophication and a major correction of the marine habitats characteristics of certain river systems.

Year	1990		1991		1992		1993	
Sector	BOD load	Population equivalent						
Agro-based industry	15	0.3	12	0.24	30	0.60	28	0.56
Manufacturing industries	25	0.50	25	0.50	27	0.54	77	1.54
Animal husbandry	65	1.30	65	1.30	211	4.20	230	4.60
Population (sewage)	380	7.60	385	7.70	481	9.63	698	13.96
Total	485	9.7	487	9.74	749	14.97	1,033	20.66

Table 2.3: Natural pollution load discharged according to sector 1990–1993

2.3 The Clean Oceans Device

The plan is to use a centrifuge-like system to separate the contents on the basis of density. This device would pump water with a bilge pump into our system. The circular curvature inside the water flow leads the thicker things outside while a shorter path follows the less dense objects. The water that carries the plastic waste flows into a storage room at the end of every path. This waste-free "filtered" water will then be pumped out to our power (Lardizabal, Wu, Lam, Lam, & Lau, 2011).

The robot is developed that would remain in the ocean for a longer period of time and be able to work completely. It has a GPS unit with a software that tells the system to track a specific path and carry more sensors that detect location, power level, tank capacity and other necessary sensors. Hence, the prototype is made that can be adjust to improve our design for later generations.

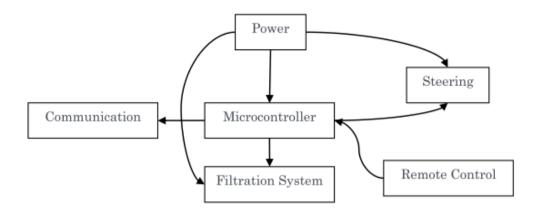


Figure 2.1: Block diagram for proposed project

2.3.1 Prototype I

The team has assembled the first initial prototype that relies solely on the presence of an activity of a bilge pump. The use of ocean water with plastic waste pollution was based on the passive natural flow-in cut at the front of the system while the model was designed. The model of this proof of use is a conventional five-gallon tub, which has a bilge pump with a capacity to carry out the debris and has a capacity of 800 gallons an hour. The prototype can collect the debris but it could not be kept in its collection chamber. As the design approach is more passive, debris would only hang around the top of the device. The device would be filled up after a few more hours and run the risk of recycling some of the collected device into the water.