

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF HUMAN SECURITY ALERT SYSTEM BASED ON IOT TO SEND SOS

This report is submitted in accordance with the requirement of the University

Technical Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering

Technology (Industrial Electronics) with Honours.

by

VISHALLINI A/P GUNABALAN B071610111 931129025344

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF HUMAN SECURITY ALERT SYSTEM BASED ON IOT TO SEND SOS

Sesi Pengajian: 2019

Saya **VISHALLINI A/P GUNABALAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

		Mengandung	i makluma	at yang	berdarjah	keselamatar	n atau
	SULIT*	kenentingan	Malaysia	sebagaima	ana vang	termaktub	dalam
		kepentingan	Malaysia	sebagaim	ana yang	termaktub	da

AKTA RAHSIA RASMI 1972.

	TERHAD*	Mengandungi maklur	mat TERHAD yang telah ditentukan oleh	
	TERHAD	organisasi/badan di m	ana penyelidikan dijalankan.	
\boxtimes	TIDAK			
	TERHAD			
Yang	benar,		Disahkan oleh penyelia:	
VISHALLINI A/P GUNABALAN		UNABALAN	MOHD ANUAR BIN ADIP	
Alamat Tetap:			Cop Rasmi Penyelia	
NO 20	049 LORONG	KENARI 6		
TAMA	AN PKNK, JA	LAN TUN RAZAK		
05600 ALOR SETAR KEDAH		R KEDAH		
Tarikh:			Tarikh:	

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF HUMAN SECURITY ALERT SYSTEM BASED ON IOT TO SEND SOS is the results of my own research except as cited in references.

Signature:	
Author:	VISHALLINI A/P GUNABALAN
Date:	

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of University Technical Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Industrial Electronics) with Honours. The member of the supervisory is as follow:

Signature:	

Supervisor: MOHD ANUAR BIN ADIP

ABSTRAK

Sejak tahun 1940, salah laku seksual telah berlaku di Amerika kepada wanita terutama dalam jumlah yang banyak, dan ini telah memberi kesan kepada negara dalam pelbagai cara. Sering kali, mangsa salah laku seksual tidak mendapat bantuan yang diperlukan secepat mungkin. Tindakan kejam ini secara perlahan mencemari benua Asia. Di Malaysia, salah laku seksual telah berlaku kepada ketiga-tiga kaum utama di Malaysia. Kesalahan seksual yang berlaku di tempat kerja mungkin salah satu yang paling sukar untuk dilalui, kerana ia melibatkan begitu banyak aspek yang diperlukan untuk kehidupan yang stabil. Mangsa keadaan seperti ini, seringkali tidak medapat bantuan akhirnya. Untuk membantu mangsa keadaan seperti ini, produk yang boleh menghantar mesej SOS yang memerlukan tindakan pantas nampaknya merupakan penyelesaian yang sah.

ABSTRACT

Since 1940, sexual misconduct has taken place in America to women especially in a large number, and this has affected the nation in many way. Often times, the victim of sexual misconduct do not get the help needed as soon as possible. This heinous act has slowly contaminated the Asian continent. In Malaysia, sexual misconduct has occurred to all three major races in Malaysia. Sexual misbehave which takes place at the workplace is probably one of the toughest to fight through, because it involved so many aspects that is required to a stable life. Victims of these sort of situation, stay just as that, victims, without getting any help at the end of the day. In order to help these victims, a product which would be able to send a SOS message that would require fast action seems to be a valid solution.

ACKNOWLEDGEMENTS

I would like to convey my sincere appreciation firstly to Guruji and to several individuals who have supported me throughout my completion of this final year project.

Firstly I would like to express my since thanks to my supervisor, Sir Mohd Anuar Bin Adip, for his time, patience, insightful comments, valuable suggestions, also for the practical advices which helped me directly and indirectly in completing this paper work. Besides that, I would also like to thank my lecturers that, have given me guidance in choosing the appropriate components that would help me build my project and also which will help reduce the chances and errors in them.

I also wish to express my sincere thanks to University Teknikal Malaysia Melaka (UTeM) for all the accessibility that it has provided for me in completing this paper work. The library sources that were easy to be obtained and the research papers that was available really came in handy. Besides that I would also like to thank my friends who have been sharing opinions and suggestion while finishing this task, which honestly help me so much. A lot of errors were avoided through the insight of my friends. Finally, I would like to thank my mother for constantly giving me motivation, for being my backbone throughout the completion of this task, for constantly praying for me, and for believing in me.

TABLE OF CONTENTS

		PAGE
DEC	CLARATION	iv
APP	PROVAL	v
ABS	STRAK	vi
ABS	STRACT	vii
ACK	KNOWLEDGEMENTS	viii
TAB	BLE OF CONTENTS	ix
LIST	Γ OF TABLES	xiv
LIST	Γ OF FIGURES	XV
LIST	Γ OF APPENDICES	xviii
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background	1
1.3	Problem Statement	2
1.4	Objective	2
1.5	Scope of the project	3
1.6	Project of significance	3

СНА	PTER 2	LITERATURE REVIEW	4
2.1	Introduction	n	4
2.2	Related Ca	ses	4
2.3	Evolution of	of Human Security System	5
2.4	Camera		8
2.5	Heart Rate		8
2.6	Related wo	rk	10
	2.6.1	GPS and GSM Based Self Defence System for Women Safety	10
	2.6.2	Smart Intelligent Security System for Women	13
	2.6.3	Women Security System Using GSM and GPS	16
	2.6.4	Women Employee Security System Using GPS and GSM Based	
		Person Tracking	19
	2.6.5	GSM Based Women's Safety Device	20
	2.6.6	Smart Security Solution for Women Using IOT	25
	2.6.7	Advanced Women Security System Based on IOT	26
	2.6.8	Smart Gadget for Women Safety Using IOT	28
	2.6.9	IOT Based Women's Safety Gadget	30
2.7	Table of Co	omparison	31
2.8	Table of co	mparison between microcontrollers	33
СПА	PTER 3	METHODOLOGY	34
CHA	LIEKS	METHODOLOGI	34

3.1	Introduction	1		34
3.2	Project Met	hodology		34
	3.2.1	Block Di	iagram	35
	3.2.2	Project F	Flow	36
3.3	Hardware D	D evelopme	nt	38
	3.3.1	Heart Ra	te Monitor	38
		3.3.1.1	Pin Configuration of Heart Rate Monitor	39
		3.3.1.2	Operation Principle of Heart Rate Pulse Sensor	40
	3.3.2	Arduino	NANO	41
		3.3.2.1	Pin Configuration of Arduino NANO	42
		3.3.2.2	Operation Principle of an Arduino NANO	43
	3.3.3	Raspberr	ry Pi 3 Model B	43
		3.3.3.1	Pin Configuration	44
	3.3.4	GPS Mo	dule	45
		3.3.4.1	Pin Configuration	46
		3.3.4.2	Operation Method	46
	3.3.5	Vibration	n Motor Circuit	47
	3.3.6	Logitech	webcam	48
3.4	Software Do	evelopmen	t	49
	2.4.1	ЮТ		40

	3.4.2	Arduino IDE	52
	3.4.3	VNC Viewer	52
CHA	PTER 4	RESULTS	53
4.1	Introduction	n	53
4.2	Software		53
	4.2.1	IOT IFTTT	53
4.3	Data Obtain	ned	57
	4.3.1	Heart Rate	57
		4.3.1.1 Pulse Rate Sensor	58
		4.3.1.2 Heart Rate Monitor	59
	4.3.2	Final product	61
	4.3.3	GPS data	68
4.4	Power Con	sumption	70
СНА	PTER 5	CONCLUSION AND RECOMMENDATION	71
5.1	Conclusion		71
5.2	Limitations		72
5.3	Recommen	dations for Future Work	72
REF	ERENCES		74

APPENDIX 80

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1	Heart Monitor Pin Connection	39
Table 3.2	Basic technical specs of an Arduni NANO	41
Table 3.3	Pin configuration on an Arduino NANO	42
Table 3.4	Specification of Vibrator Motor	47
Table 4.1	Table of data of users	59
Table 4.2	Number of true ready using heart rate monitor	60
Table 4.3	Heart rate data while sitting	65
Table 4.4	Heart rate reading while walking	65
Table 4.5	Heart beat rate when running	66
Table 4.6	Heart rate reading while jumping	66
Table 4.7	Voice Recognition detection data after running	67
Table 4.8	Voice recognition data after jumping	68
Table 4.9	GPS data	68
Table 4.10	Power consumption	70

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Basic RFID connection	6
Figure 2.2	Wi-Fi Module	7
Figure 2.2.3	Heart Rate chart	9
Figure 2.2.4	Stress test	10
Figure 2.5	The block diagram of the proposed model.	11
Figure 2.6	Diagram of speech circuit module	12
Figure 2.7	Block diagram of the proposed project	14
Figure 2.8	Message delivered via GSM	15
Figure 2.9	Example of threat over women.	16
Figure 2.10	Block diagram of the parameters used.	17
Figure 2.11	An assembly of the hardware module	18
Figure 2.12	Message that would be received by the pre-determined number	: 18
Figure 2.13	Block diagram of the parameters used.	19
Figure 2.14	Software used to interface with arduino.	21
Figure 2.15	GSM module (sim808)	22
Figure 2.16	Electret microphone	22

Figure 2.17	Input Output Assignment between Arduino and the parameters used.	23
Figure 2.18	A depiction of the message and call that was received by the pre- determined number.	24
Figure 2.19	Process flow of the project	26
Figure 2.20	Interface using GlassFish Server	27
Figure 2.21	Detailed circuit connection using Nodemcu ESp-12E	29
Figure 2.22	System Architecture	30
Figure 3.1	Block diagram of the system	35
Figure 3.2	Block diagram of the system with components picture.	35
Figure 3.3	Flow chart of the system	36
Figure 3.4	Heart Rate module	39
Figure 3.5	Pin configuration of Heart rate module	40
Figure 3.6	Placement of sensors on the body	40
Figure 3.7	Arduino NANO	42
Figure 3.8	Raspberry Pi 3 Model B	43
Figure 3.9	Pin configuration of Raspberry Pi 3 Model B	44
Figure 3.10	GPIO of raspberry pi 3 B	45
Figure 3.11	GPS module	45
Figure 3.12	Pin configuration of GPS module	46
Figure 3.13	Logitech webcam	49
Figure 3.14	Step's to choose the services	50

Figure 3.15	Steps to key in notification	51
Figure 3.16	Steps to key in URL	51
Figure 4.1	Step 1 to 3	54
Figure 4.2	Step 4 to 6	54
Figure 4.3	Step 7 URL generation	55
Figure 4.4	VNC Viewer	55
Figure 4.5	Placement of URL in VNC Viewer	56
Figure 4.6	The notification that is received	56
Figure 4.7	The location that is received via notification	57
Figure 4.8	Bar chart of number of testing against number of people	59
Figure 4.9	Bar chart of number of testing against number of people	60
Figure 4.10	Connection of hardware	61
Figure 4.11	Person 1 wearing the heart rate monitor	62
Figure 4.12	Person 2 wearing the heart rate monitor	62
Figure 4.13	The component being incorporated in the vest	63
Figure 4.14	First reading	64
Figure 4.15	Second reading	64
Figure 4 16	Third reading	64

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix 1	Project Gantt chart		80

CHAPTER 1

INTRODUCTION

1.1 Introduction

This part of the report consist of the project background, problem statement, objective, and the scope of the project. The main objective of this project is to tackle the problem that is affirmed in the problem statement.

1.2 Background

For the longest time, sexual harassment, a violation of human rights, has taken place at work environment. These sort of indecency are hard to deal with especially for woman. Sexual harassment happens to both men and women, but an international survey data shows that a large number of victim, happens to be women (Maypole & Skaine, 1983). Higher authorities with shallow ethics would try to press themselves on woman at every chance that they get.

Most of the time, when a report is lodged on a higher authority or any other person, male or female, they could buy their way through bribing or even through connections that they might have with the Human Resource department, which could be rather unfair and unethical when it comes to the victim. An immediate call for help happens to be absent, prompt action would cut down the space for errors.

Even when a police report has been lodged, the police personnel would not be able to prevent the heinous incident from taking place, therefore to send help before the situation gets worse. A device which would send information of the situation right on

the spot will be beneficial. Stating the specific location also a picture of the place of incident or even a picture of the perpetrator.

1.3 Problem Statement

Being stuck in situation where a person is faced with a sexual assault, they may feel helpless, because there is no place to cry for an immediate help and it can be devastating. From a victim's point of view, the problem is that, the victim would not be able to make an immediate report of a certain unfortunate event. It is normally reported to the higher authority only after the crime is perpetrated. But a call for help, while being in a such situation is absent. Besides that in order to frame the perpetrator, often a proof is needed, and if the perpetrator happens to be someone influential, a proof in the form of a picture is very difficult to obtain.

1.4 Objective

The main objective on producing this product:

- 1. To develop a system that can immediately send SOS, to the authority with the location of the victim using IoT in real time.
- 2. To ensure that the system can send picture of the location of the scene or the picture of the perpetrator, if attacked face forward.

1.5 Scope of the project

The extend of this project is to be able to help men or women who would need help informing the authorities or even to reach out for help (fast). This project is triggered the variation of the pulsation that a person would go through, when a sexual misconduct has been encountered, having it personalized. This project, would be able to interface with the IOT server, only when Wi-Fi is available. This product is also made for the age group of 20-40 years office workers within an office. Also this system focusses on people with normal heart rate, excluding the exterior factors such as temperature, body weigh emotions, and also health condition.

1.6 Project of significance

In terms of safety precaution, this project would be able very useful for times when, a person especially a women in distress because this project can be attached to the body and would send prompt message to the authority. It would be accessible everywhere with Wi-Fi. Furthermore the cost of the project and the significance of it would be levelled due to the importance of the project at hard.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter would be focusing on the background of the project and the reviews of several related work that has been conducted in the literature. The literature review focuses on the introduction of the human security which is based on the variation of the heart rate pulsation through IOT. As for the reference, there are a few articles and journals that are studied in order to complete this whole project.

2.2 Related Cases

Few decades ago sexual harassment was not even addressed as a harassment, yet it went by the moniker of sex discrimination. After further examination, then the whole heinous act was recognized as a sexual harassment and was prohibited from having it called as a sex discrimination(Mackinnon & Siegel, 2003). The idea of having women being confined in their respective households all day long is not applicable anymore(Voydanoff, 1987). This is due the reason that women working, is larger in number now and involuntarily these involvement has unsheltered them to sexual harassment in these places (W. & Shuy, 2012). Therefore, based on a research that was done approximately 50% of women tend to experience undesired and heinous sexrelated attitude at the work place Magley, V. J., Hulin, C. L., Fitzgerald, L. F., & DeNardo, M. (1999). Outcomes of self-labeling sexual harassment. Journal of Applied Psychology, 84, 390-402. http://dx.doi.org/10.1037/0021-9010.84.3.390. In 2008, a

Senior Manufacturer at an electronic company owned by Freescale Semiconductor was actually discharges for smacking the back of a woman without her consensus, but towards the end the claimant, then verbalized that he was actually being victimized by his Manufacturing Manager. Whereas in 2009, Galaxy Automation Sdn Bhd a woman whom did not want to extend her managers sexual offer received a dismissal letter from her company. According to the claimant, she has been sexually harassed particularly by her manager more than couple of times. After deeper investigation and taking into account of the whole chronology, that was when the claimant had been proven right. Next, in 2010 at Sistem Televisyen Malaysia Berhad (TV3), the victim, who was a trainee at the time, accused an executive broadcast journalist from the same company for allegedly lying on her lap, without mutual consent. Besides that, apparently he made sucking noise while looking at her breast and asked her if he could bite it. After, scrutinizing the proof that was obtained a little further, she was then proven right and actions were taken according to the law, towards the perpetrator (Halili Hassan & Lee Zing, 2015).

2.3 Evolution of Human Security System

After such debate on sexual harassment for the longest time, engineers and engineering school's has been putting so much effort in making technology that may lend a helping hand in aiding this problem. Initial products were made, in hopes to locate and track women's whereabouts by using GPS. Later on the delivery on that particular information took various platforms and ways. Radio Frequency Identification (RFID) based tracking system was one of the very few pioneer ways methods in this

field. RFID is a small chip with an antenna, it can be connected via mark or even a tag but per user only. The labels in a RFID will be entrenched with the transmitter and the recipient. RFID is made up of two parts, the microchip and the receiving wire. In order to have data instilled in the tag, a two way radio transmitter-beneficiary is used to emanate a flag to the wire, and this tag would respond to the data that it has received. Only then will the user send the data received to be read through a RFID PC program. Data would not be jumbled up, as each transmitter would have it's known serial number(Designs, 2017)

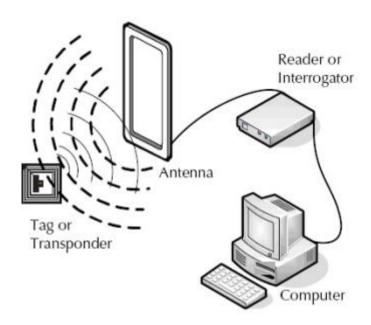


Figure 2.1 Basic RFID connection

Sooner or later, Global System for Mobile communication (GSM) was brought to light. GSM reinforces most of the global mobile phone networks. It is very much used, hence its success in wireless technology. GSM happens to be the world's most rapid growing mobile standing and this is due to the fact that, it is a digital cellular technology that is used to transmit mobile voice and data service which has the tendency to operate at 900MHz and 1.8GHz band. It can transfer data through a speed