

# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# OMNIDIRECTIONAL 1090 MHZ ANTENNA FOR AUTOMATIC DEPENDANT SURVEILLANCE BROADCAST (ADS-B)

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunications) with Honours.

by

# MUHAMMAD SYAHIR AKMAL BIN MOHD TAHIR B071610420 950831-08-6757

# FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2019



### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: OMNIDIRECTIONAL 1090 MHz ANTENNA FOR AUTOMATIC DEPENDANT SURVEILLANCE BROADCAST (ADS-B)

Sesi Pengajian: 2019

Saya **MUHAMMAD SYAHIR AKMAL BIN MOHD TAHIR** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan (X)

ii

|             |           | Mengandungi                                                | maklumat | yang                   | berdarjah    | keselamatan | atau |
|-------------|-----------|------------------------------------------------------------|----------|------------------------|--------------|-------------|------|
| П           |           | kepentingan Malaysia sebagaimana yang termaktub dalam AKTA |          |                        |              |             |      |
|             | SULI1*    | RAHSIA RAS                                                 | MI 1972. |                        |              |             |      |
|             |           |                                                            |          |                        |              |             |      |
|             | TERHAD*   | Mengandungi maklumat TERHAD yang telah ditentukan oleh     |          |                        |              |             |      |
|             |           | organisasi/badan di mana penyelidikan dijalankan.          |          |                        |              |             |      |
| $\boxtimes$ | TIDAK     |                                                            |          |                        |              |             |      |
|             | TERHAD    |                                                            |          |                        |              |             |      |
| Yang        | benar,    |                                                            | Disa     | ıhkan o                | leh penyelia | a:          |      |
|             |           |                                                            |          |                        |              |             |      |
|             |           |                                                            |          |                        |              |             |      |
| MUH         | AMMAD SYA | HIR AKMAL B                                                | BIN      |                        |              |             |      |
| MOHD TAHIR  |           |                                                            | Ts. ]    | Ts. MOHD ERDI BIN AYOB |              |             |      |
| Alama       | it Tetap: |                                                            | Сор      | Cop Rasmi Penyelia     |              |             |      |
| X           |           |                                                            |          |                        |              |             |      |
| Х           |           |                                                            |          |                        |              |             |      |
| X           |           |                                                            |          |                        |              |             |      |
|             |           |                                                            |          |                        |              |             |      |
| Tarikh      | :         |                                                            | Tari     | kh:                    |              |             |      |
|             |           |                                                            |          |                        |              |             |      |
|             |           |                                                            |          |                        |              |             |      |

\*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

### DECLARATION

# I hereby, declared this report entitled OMNIDIRECTIONAL 1090 MHz ANTENNA FOR AUTOMATIC DEPENDANT SURVEILLANCE BROADCAST (ADS-B) is the results of my own research except as cited in references.

| Signature: |                           |
|------------|---------------------------|
| Author:    | MUHAMMAD SYAHIR AKMAL BIN |
|            | MOHD TAHIR                |

Date:

### APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:

> Signature: Supervisor : Ts. MOHD ERDI BIN AYOB

Signature: .....

### ABSTRAK

Automatic Dependent Surveillance-Broadcast (ads-b) adalah kaedah teknologi terbaru dalam pengawasan ruang udara. Ia juga satu teknik alternatif menyampaikan data kedudukan pesawat pesawat udara terus menghantar identiti mereka dan maklumat navigasi. isyarat atau amaran tersebut diterima oleh stesen bumi dan disampaikan kepada Air Traffic Services di mana ia digunakan untuk meningkatkan data radar. Ia juga boleh diterima oleh pesawat lain dan lalu lintas berhampiran. Kerana secara purata, lapangan terbang Malaysia kini mengendalikan sekitar 30,000 penumpang yang berlepas sehari, semasa menerima kira-kira 50,000 setiap hari untuk ketibaan. Ia berfungsi lebih daripada 60 syarikat penerbangan yang beroperasi di lapangan terbang. Data ADS-B dikumpulkan dari laman web yang diketahui untuk melihat ke dalam pergerakan pesawat terbang di atas ruang udara Semenanjung Malaysia dengan memplot trajektori laluan penerbangan berdasarkan maklumat ID penerbangan, latitud dan longitud dan altitud. Kita menunjukkan bahawa ini Sample kemasukan id penerbangan untuk "Boeing" yang AK6285 / AXM6285 dari airasia, dengan latitud: 43.5033, longitud: -79.1297 dan ketinggian: 7833.36. Kita menunjukkan bahawa dari trajektori penerbangan dan laluan penerbangan semua data yang dikumpul, ketumpatan dan aliran lalu lintas udara dari sistem ADS-B bagi Semenanjung Malaysia boleh dilihat.

### ABSTRACT

Automatic Dependent Surveillance-Broadcast (ads-b) is the newest technological vault in airspace surveillance. It also an alternate technique of presenting aircraft position data which aircraft continually transmit their identity and navigational information. Such signals or alert are received by ground station and relayed to Air Traffic Services where they are used to increase radar data. It can also be received by other aircraft and the nearby traffic. As on average, Malaysian airport currently handles around 30,000 departing passengers a day, while receiving around 50,000 daily for arrivals. It serves more than 60 airlines operating at the airport. The ADS-B data was gathered from the known website in order to look into the movements of aircraft flying over Peninsular Malaysia's airspace by plotting the trajectories of flight path based on its flight ID, latitude, and longitude and altitude information. We show that this Sample entries of flight id for "Boeing" which is AK6285/AXM6285 from airasia, with latitude: 43.5033, longitude: -79.1297 and altitude: 7833.36. We show that from the flight trajectories and flight path of all collected data, the density and flow of air traffic from the ADS-B system for Peninsular Malaysia can be visualized.

### DEDICATION

I would like to dedicated and special thanks to My beloved father and mother, To my beloved family, my respected lecturer and fellow friends And for the rest, might Allah blessed you Thanks for all the guided and support

viii

### ACKNOWLEDGEMENTS

First of all, I might want to offer my gratitude to the Al-Mighty, ALLAH S.W.T for the gift, I ready to finish my Final Year Project. Thank you to my parents and family members for their invaluable help, consolation, consistent love, significant advices and their comprehension in finishing the project.

I would hereby wish to express my deepest appreciation and gratitude to Dr Adam Wong Yoon Khang, my respect supervisor for her ongoing dedication, commitment, motivation and valuable guidance in making this project a success. Their consideration, profitable counsel and valuable criticsm are extremely essential and have given huge commitment towards my task.

And last, I would like to thank all my lectures and friends who taught me throughout my education at University Technical Malaysia Melaka.

ix

### **TABLE OF CONTENTS**

| Abstrak                         | PAGE    |
|---------------------------------|---------|
| Abstract                        |         |
| Dedication                      |         |
| Acknowledgement                 | iv      |
| Table of Content                | IV<br>V |
|                                 | v       |
|                                 | 1X      |
| List of Figures                 | Х       |
| List Appendices                 | xiii    |
|                                 |         |
| CHAPTER 1: INTRODUCTION         | 1       |
| 1.0 Introduction                | 1       |
| 1.1 Background of Project       | 1       |
| 1.2 Problem Statement           | 3       |
| 1.3 Objectives                  | 4       |
| 1.4 Scope of Project            | 5       |
| 1.5 Thesis Organization         | 6       |
| 1.6 Chapter Summary             | 6       |
| CHAPTER 2: LITERATURE REVIEW    | 7       |
| 2.0 Introduction                | 7       |
| 2.1 Theory of Antenna Operation | 7       |
| 2.1.1 Radio System and Antenna  | 8       |

Х

| 2.2 | 2 Antenna Parameters                                         |    |
|-----|--------------------------------------------------------------|----|
|     | 2.2.1 Radiation Pattern                                      | 10 |
|     | 2.2.2 Directivity                                            | 12 |
|     | 2.2.3 Power gain                                             | 12 |
|     | 2.2.4 Radiation Resistance and efficiency                    | 13 |
| 2.3 | Type of Antenna                                              | 15 |
|     | 2.3.1 Omnidirectional Antenna                                | 15 |
|     | 2.3.2 Directional Antenna                                    | 16 |
|     | 2.3.3 Comparison of Omnidirectional and Directional Antenna  | 17 |
|     | 2.3.4 Advantage and Disadvantages of Omnidirectional Antenna | 18 |
| 2.4 | Introduction to Omnidirectional Antenna                      | 19 |
|     | 2.4.1 The Characteristic of Omnidirectional Antenna          | 20 |
| 2.5 | Antenna Characteristics                                      | 20 |
|     | 2.5.1 Radiation Pattern                                      | 20 |
|     | 2.5.2 Antenna gain                                           | 21 |
|     | 2.5.3 Front-to-back ratio                                    | 22 |
| 2.6 | Chapter Summary                                              | 23 |
| СН  | APTER 3: METHODOLOGY                                         | 24 |
| 3.0 | Introduction                                                 | 24 |
| 3.1 | Design Specification                                         | 24 |
|     | 3.1.1 Flowchart of Standard Classification                   | 25 |
|     | 3.1.2 Flowchart of the Antenna Selection                     | 26 |
|     | 3.1.3 Operation Frequency                                    | 27 |
| 3.2 | Design using Software                                        | 27 |

|     | 3.2.1 CST software                  | 27 |
|-----|-------------------------------------|----|
| 3.3 | Hardware Development                | 28 |
|     | 3.3.1 Types of RTL-SDR Usb Dongle   | 29 |
|     | 3.3.2 Types of Coaxial to Used      | 29 |
| 3.4 | Testing Measurement                 | 30 |
|     | 3.4.1 Network Analyzer              | 30 |
|     | 3.4.2 Anechoic Chamber              | 31 |
| 3.5 | Expected Result                     | 32 |
| 3.6 | Chapter Summary                     | 32 |
| СН  | APTER 4: RESULTS & DISCUSSIONS      | 33 |
| 4.0 | Introduction                        | 33 |
| 4.1 | Antenna Simulation in CSTT Software | 34 |
| 4.2 | Simulation Results                  | 36 |
|     | 4.2.1 Return Loss                   | 36 |
|     | 4.2.2 Gain                          | 37 |
|     | 4.2.3 Directivity                   | 38 |
|     | 4.2.4 Bandwidth                     | 38 |
|     | 4.2.5 Radiation Pattern             | 39 |
|     | 4.2.6 VSWR                          | 39 |
| 4.3 | Hardware Antenna Structure          | 40 |
| 4.4 | Hardware Measurement Results        | 40 |
|     | 4.4.1 Return Loss                   | 41 |
|     | 4.4.2 Gain                          | 41 |
|     | 4.4.3 Bandwidth                     | 42 |

xii

|     | 4.4.4 Radiation Pattern                               | 43 |  |
|-----|-------------------------------------------------------|----|--|
|     | 4.4.5 VSWR                                            | 43 |  |
| 4.5 | Comparison between Simulation and Hardware Results    | 44 |  |
| 4.6 | Antenna Application                                   | 45 |  |
|     | 4.6.1 Application Without Antenna                     | 46 |  |
|     | 4.6.2 Application with Omnidirectional Dipole Antenna | 49 |  |
|     | 4.6.3 Application using Omnidirectional Patch Antenna | 52 |  |
| 4.7 | Comparison between Antenna Application Results        | 55 |  |
| 4.8 | Chapter Summary                                       | 55 |  |
| СН  | <b>APTER 5: CONCLUSION &amp; FUTURE WORK</b>          | 56 |  |
| 5.0 | Introduction                                          | 56 |  |
| 5.1 | Conclusion                                            | 56 |  |
| 5.2 | Future Work                                           | 57 |  |
| 5.3 | Chapter Summary                                       | 57 |  |
| RE  | REFERENCES 58                                         |    |  |
| AP  | PENDIX                                                | 59 |  |

xiii

### LIST OF TABLES

| 2.1 | Region of antenna transition between the wave guided and waves propagated | 17 |
|-----|---------------------------------------------------------------------------|----|
| 2.2 | A typical radio system                                                    | 19 |
| 4.1 | Antenna Design Specification                                              | 33 |
| 4.2 | Parameters of The Design                                                  | 35 |
| 4.3 | Comparison Between Simulation and Hardware Results                        | 44 |
| 4.4 | 1090MHz Omnidirectional Antenna Series Specification                      | 46 |

# LIST OF FIGURES

| 2.1 | Region of antenna transition between the wave guided and waves propagated | 8  |  |
|-----|---------------------------------------------------------------------------|----|--|
| 2.2 | A typical radio system 9                                                  |    |  |
| 2.3 | Radiation pattern of Hertzian dipol                                       | 10 |  |
| 2.4 | Radiation pattern of generic antenna                                      | 11 |  |
| 2.5 | Equivalent circuit of transmitting antenna                                | 13 |  |
| 2.6 | The omnidirectional antenna coverage pattern. The x indicate horizontal   | 15 |  |
|     | plane (red color) while z indicate the moves above the antenna,           |    |  |
|     | gain diminishes green color                                               |    |  |
| 2.7 | The radiation pattern of directional antenna                              | 16 |  |
| 2.8 | example of the radiation pattern of the antenna                           | 20 |  |
| 2.9 | example of the antenna gain and 2.5.3 is the explanation of the figure    | 21 |  |
| 3.1 | Flowchart of the standard classification                                  | 25 |  |
| 3.2 | Flowchart of the antenna selection                                        | 26 |  |
| 3.3 | Network analyzer                                                          | 30 |  |
| 3.4 | Anechoic chamber                                                          | 31 |  |
| 4.1 | Top View Design                                                           | 34 |  |
| 4.2 | Side View Design                                                          | 34 |  |
| 4.3 | Return Loss Result                                                        | 36 |  |
| 4.4 | Realized Gain Result                                                      | 37 |  |
| 4.5 | Gain (IEEE) Result                                                        | 37 |  |
| 4.6 | Directivity Result                                                        | 38 |  |
| 4.7 | Bandwidth Result                                                          | 38 |  |

| 4.8   | Radiation Pattern Result                                              | 39 |  |
|-------|-----------------------------------------------------------------------|----|--|
| 4.9   | VSWR Result                                                           | 39 |  |
| 4.104 | Antenna Design                                                        | 40 |  |
| 4.111 | Measurement Result Return Loss                                        | 41 |  |
| 4.121 | Measurement Result Bandwidth                                          | 42 |  |
| 4.131 | Measurement Result Radiation Pattern                                  | 43 |  |
| 4.141 | Measurement Result VSWR                                               | 43 |  |
| 4.157 | Antenna Application                                                   | 45 |  |
| 4.164 | Application without Antenna                                           | 47 |  |
| 4.17I | Result Without Antenna                                                | 47 |  |
| 4.17. | 1 Result Without Antenna at MD2 Website                               | 47 |  |
| 4.17. | 2 Coverage Pattern (km) and Bandwidth for the application without the | 48 |  |
|       | Antenna                                                               |    |  |
| 4.17. | 3 Contacts/ Distance (km), Messages/ Hours in local time for the      | 48 |  |
|       | application without the antenna                                       |    |  |
| 4.184 | Application using Omnidirectional Dipole Antenna                      | 49 |  |
| 4.197 | Application using Omnidirectional Dipole Antenna                      | 50 |  |
| 4.19. | 1 Result using Omnidirectional Dipole Antenna at MD2 Website          | 50 |  |
| 4.19. | 2 Coverage Pattern (km) and Bandwidth for the application using       | 51 |  |
|       | Omnidirectional Dipole antenna                                        |    |  |
| 4.19. | 3 Contacts/ Distance (km), Messages/ Hours in local time for the      | 51 |  |
|       | application using Omnidirectional Dipole antenna                      |    |  |
| 4.204 | 4.20 Application using Omnidirectional Patch Antenna 52               |    |  |
| 4.21  | Application using Omnidirectional Patch Antenna                       | 53 |  |
| 4.21. | 1 Result using Omnidirectional Patch Antenna at MD2 Website           | 53 |  |
| 4.21. | 2 Coverage Pattern (km) and Bandwidth for the application using       | 54 |  |

Omnidirectional Patch antenna

4.21.3 Contacts/ Distance (km), Messages/ Hours in local time for the 54 application using Omnidirectional Patch antenna

C Universiti Teknikal Malaysia Melaka

### LIST OF APPENDICES

| APPENDIX   | TITLE             | PAGE |
|------------|-------------------|------|
| Appendix A | GANNT CHART PSM 1 | 77   |
| Appendix B | GANNT CHART PSM 2 | 78   |

### LIST OF SYMBOLS

| D, d | - | Diameter             |
|------|---|----------------------|
| F    | - | Force                |
| g    | - | Gravity = 9.81 m/s   |
| Ι    | - | Moment of inertia    |
| 1    | - | Length               |
| m    | - | Mass                 |
| Ν    | - | Rotational velocity  |
| Р    | - | Pressure             |
| Q    | - | Volumetric flow-rate |
| r    | - | Radius               |
| Т    | - | Torque               |
| Re   | - | Reynold number       |
| V    | - | Velocity             |
| W    | - | Angular velocity     |
| X    | - | Displacement         |
| Z    | - | Height               |
| q    | - | Angle                |

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.0 Introduction

This chapter give an overview of the project regarding background of the project, omnidirectional 1090 MHz antenna for automatic dependent surveillance broadcast (ADS-B), the basic design of omnidirectional patch antenna, problem statement of the project, objectives to achieve, scope of the project and the thesis organization.

#### 1.1 Background of Project

Over The Omnidirectional 1090 MHz Antenna for ADS-B is the project to characterize the omnidirectional antenna with the fixed frequency value of 1090 MHz with the effective receiving gain for ADS-B which act as portable receiver. Specifically, the omnidirectional antenna able to perform the clear wireless transmission that radiates or intercepts the radio-frequency (RF) electromagnetic field very well in the horizontal direction in flat position. Therefore, the ADS-B, in particular, is the surveillance technology in which the involving aircraft capable to determine the specific position by using the navigation provided by satellite and broadcast about it occasionally. The information gathered is able to be received by air traffic from the ground based station as the good replacement for the secondary surveillance radar. To perform the suitable simulation of this project, i choose the computer simulation software such as CST and FEKO. Those simulation software mean to be used to design and portrayed the antenna for the optimum return loss and gain. In order to perform the clear simulation, the antenna mean to be tested on the vector network analyzer for the direct comparison of the actual result against the simulation. The simulation mean to improve antenna gain. The antenna gain shall be increased the radius or range of the receiption for the ADS-B signal to be received.

The system involves an aircraft with ADS-B determining its position using GPS. A suitable transmitter then broadcasts that position at rapid intervals, along with identity, altitude, velocity and

other data. Dedicated ADS-B grounds stations receive the broadcasts and relay the information to air traffic control for precise tracking of the aircraft.

Automatic – Requires no pilot input or external interrogation.

**Dependant** – Depends on accurate position and velocity data from the aircraft's navigation system (ex. GPS).

**Surveillance** – Provides aircraft position, altitude, velocity, and other surveillance data to facilities that require the information.

**Broadcast** – Information is continually broadcast for monitoring by appropriately equipped ground stations or aircraft.

ADS-B data is broadcast every half-second on a 1090MHz, digital data link.

### **Broadcasts may include:**

Flight Identification (flight number call sign or call sign)

- ICAO 24-bit Aircraft Address (globally unique airframe code)
- Position (latitude/longitude)
- Position integrity/accuracy (GPS horizontal protection limit)
- Barometric and Geometric Altitudes
- Vertical Rate (rate of climb/descent)
- Track Angle and Ground Speed (velocity)
- Emergency indication (when emergency code selected)
- Special position identification (when IDENT selected)

The ability of a ground station to receive a signal depends on altitude, distance from the site and obstructing terrain. The maximum range of each ground station can exceed 250 nautical miles. In airspace immediately surrounding each ground station, surveillance coverage extends to near the surface.

### **1.2 Problem Statement**

Automatic dependent surveillance broadcast (ADS-B) was a completely new paradigm for air-traffic control not only in Malaysia but all over the world. Every participant retrieves their own position and velocity by using an on board GPS receiver, provide a varies frequencies or band allocation and bandwidth. The ADS-B coverage reception standards have been proposed: Universal Access Transceiver (UAT) and 1090 MHz Extended Squitter (1090ES). UAT has been created specifically for the use with aviation services such as ADS-B, utilizing the 978MHz frequency with a bandwidth of 1Mbps. Since UAT requires fitting new hardware, as opposed to 1090ES, it is currently only used for general aviation in EUROCONTROL and FAA-mandated airspaces. Commercial aircraft, on the other hand, employ SSR Mode S with Extended S quitter, a combination of ADS-B and traditional Mode S known as 1090ES. To minimize these limitations, the enhancement of an external Omnidirectional antenna shall be designed using the RF microwave software application such as CST simulation tools. It is predicted to have improved signal to noise ratio, VSWR and better antenna gain.

### 1.3 Objectives

This project purpose to make the measurement of the antenna which suitable to the current wireless technology in Malaysia. Therefore, various objectives are stated to attain the goal of the project. The main objective for this project :

 To study the high gain directional using Omnidirectional 1090 MHz antenna and to study the antenna capability.

ii) To design Omnidirectional antenna that is capable to get the information from high frequency such as Automatic dependent surveillance-broadcast (ADS-B) system (1090Mhz).

iii) To measure and analyze the performance, sensitivity of the receiver.

#### **1.4** Scope of Project

This study is proposed to develop and improvise an antenna that covers the frequency of ADS-B operation. The designed Omdirectional antenna is capable to operate at ADS-B frequency. The standard frequency of ADS-B are 1090 MHz respectively. Antenna development and analysis is using the CST simulation software. This simulation tools will be used to assess the performance of the newly design antenna in terms of return loss, radiation pattern, bandwidth, gain, efficiency and VSWR. After that, the designed antenna is fabricated by using enamel copper wire, coaxial cable and SDR software defined radio USB dongle . Lastly the fabricated antenna will be tested with real applications which is RTL 1090 software.